Марс может стать вторым домом для жизни во всех ее проявлениях, не только для людей, и даже не только для «рыб морских… птиц небесных… и каждого живого существа, что движется по земле», но и для множества видов, которых еще не существует. Новые миры порождают новые формы жизни, и в новых условиях терраформированного Марса жизнь, привезенная с Земли, может пойти дальше и множиться в еще неизведанном разнообразии новых царств и родов.
Это чудесное наследие, которое мы передадим будущим поколениям. Это не только новый мир для жизни и цивилизации, но пример того, чего мужчины и женщины, обладающие интеллектом, смелостью и дальновидностью, могут достичь, когда действуют во имя высших идеалов. Нам никогда не быть богами. Но человечество, которое преобразует Марс, докажет, что люди больше, чем просто животные, что на самом деле мы – существа, которые несут особую искру. Видя обновленный Марс, каждый сможет гордиться тем, что он – человек. Слушая историю Красной планеты, каждый сможет вдохновиться и взяться за задачи, ведущие к звездам.
Уравнения для моделирования условий на Марсе
Можно оценить среднюю температуру на Марсе как функцию атмосферного давления CO2 и солнечной постоянной, используя следующее уравнение:
Тmean = 213,5S0,25 + 20(1 + S)P0,5, (1)
где Tmean есть средняя температура планеты в градусах Кельвина, S – количество солнечного излучения, причем для современного Солнца S равен 1, и Р является атмосферным давлением над средней высоте поверхности Марса, приведенным в барах. (1 бар – это значение, которое жители равнинной местности считают нормальным атмосферным давлением – 14,7 фунта на квадратный дюйм. Так как подобные решения обычно принимают люди, живущие на зловонных болотах возле таких столичных городов, как Вашингтон, Лондон и Париж, это странное значение стало стандартом.)
Поскольку атмосфера является эффективным средством передачи тепла от экватора к полюсу, мы с Крисом Маккеем оценили:
Тpole,= Тmean – 75S0,25/(1 + 5Р) (2)
Также разумно предположить, основываясь на грубом приближении к наблюдаемым данным, что:
Тmax = Тequator =1,1 Тmean (3)
и что глобальное распределение температуры определяется по формуле:
Т(θ) = Тmax – (Тmax – Тpole) × (sinθ)1,5, (4)
где θ – это широта (северная или южная).
Уравнения (1)-(4) задают температуру на Марс как функцию давления диоксида углерода. Тем не менее, как упоминалось выше, давление диоксида углерода на Марсе само является функцией температуры. Есть три источника диоксида углерода на Марсе: атмосфера, сухой лед в полярных шапках и газ, поглощенный реголитом. Взаимодействие резервуаров полярных шапок с атмосферой хорошо понятно и определяется простым соотношением между давлением насыщенного пара двуокиси углерода и температуры на полюсах. Оно задается кривой давления насыщенного пара диоксида углерода, которая аппроксимируется следующим образом:
Р = 1,23×107{ехр(-3170/Тpо1е)} (5)
До тех пор пока углекислый газ есть как в атмосфере, так и на южном полюсе, уравнение (5) дает точный ответ на вопрос о том, как давление углекислого газа в атмосфере будет зависеть от полярной температуры. Однако, если полярная температура должна подняться до значения, при котором давление насыщенного пара гораздо больше, чем то, что может быть произведено запасом CO2 на южном полюсе (от 50 до 100 миллибар), то шапка исчезнет и атмосфера будет регулироваться запасами углекислого газа в реголите.
Соотношение между давлением запаса углекислого газа в реголите, атмосферным давлением и температурой точно не известно. Маккей предлагает следующую эмпирическую оценку [51]:
P ={CMa×exp(T/Td)}3,64, (6)