т.е. произведение синуса стороны на косинус прилежащего угла равняется произведению синуса другой стороны, ограничивающей прилежащий угол, на косинус третьей стороны минус произведение косинуса стороны, ограничивающей прилежащий угол, на синус третьей стороны и на косинус угла, противолежащего первой стороне. Формула (1.33) называется формулой пяти элементов. Ее можно написать по аналогии и для произведений sin a cos С, sin b cos A, sin b cos С, sin с cos A и sin с cos В. Решим теперь равенство (1.32) относительно cos A : Возведя обе части последнего равенства в квадрат и вычтя их из 1, получим:
или
Раскрыв скобки и разделив обе части этого выражения на sin2 а, получим Полученное выражение совершенно симметрично относительно a, b и с, и заменяя A на В, а на b или A на С и а на с, напишем откуда
(1.34) или
т.е. синусы сторон сферического треугольника пропорциональны синусам противолежащих им углов; или отношение синуса стороны сферического треугольника к синусу противолежащего угла есть величина постоянная. Три выведенных соотношения (1.32), (1.33), (1.34) между сторонами и углами сферического треугольника являются основными; из них можно получить много других формул сферической тригонометрии. Мы ограничимся выводом одной только формулы для прямоугольного сферического треугольника. Положим А = 90°; тогда sin А = 1, cos A = 0, и из формулы (1.33) получим sin a cos В = sin с cos b. Разделив обе части этого равенства на sin b и заменив на на , согласно (1.34), будем иметь: ctg B = sin c ctg b или (1.35)
т.е. отношение тангенса одного катета прямоугольного сферического треугольника к тангенсу противолежащего угла равно синусу другого катета.
§ 29. Параллактический треугольник и преобразование координат
Параллактическим треугольником называется треугольник на небесной сфере, образованный пересечением небесного меридиана, вертикального круга и часового круга светила. Его вершинами являются полюс мира Р, зенит Z и светило М. Если светило М находится в западной половине небесной сферы (рис. 16), то сторона ZP
(дуга небесного меридиана) равна 90° – j , где j – широта места наблюдения; сторона ZM (дуга вертикального круга) равна зенитному расстоянию светила z = 90°
– h, где h – высота светила; сторона РМ (дуга часового круга) равна полярному расстоянию светила р = 90° – d , где d – склонение светила; угол PZM = 180° – А, где A – азимут светила; угол ZPM = t, т.е. часовому углу светила; угол PMZ = q называется параллактическим углом. Если светило находится в восточной половине небесной сферы (рис. 17), то значения сторон параллактического треугольника те же, что и в случае пребывания светила в западной половине, но значения углов при вершинах Z и Р иные, а именно: угол PZM = А – 180°, а угол ZPM = 360° – t . Вид параллактического треугольника для одного и того же светила зависит от широты места наблюдения j (от взаимного расположения Р и Z) и от момента наблюдения, т.е. от часового угла t. Применяя основные формулы сферической тригонометрии к параллактическому треугольнику (рис. 16) и считая исходными сторону РМ и угол t, получим cos (90° – d ) = cos (90° – j ) cos z + sin (90° – j ) sin z cos (180° – A), sin (90° – d ) sin t = sin z sin (180° – A), sin (90° – d ) cos t = sin (90°– j ) cos z – cos (90° – j ) sin z cos (180° – A) или (1.36)
Формулы (1.36) служат для вычисления склонения светила d и его часового угла t (а затем и прямого восхождения a = s – t) по измеренным (или известным) его зенитному расстоянию z и азимуту A в момент звездного времени s). Иными словами, они служат для перехода от горизонтальных координат светила к его экваториальным координатам. Если исходными считать сторону ZM = z и угол 180° – A, то основные формулы в применении к параллактическому треугольнику напишутся в следующем виде: cos z = cos (90° – j ) cos (90° – d ) + sin (90° – j ) sin (90° – d ) cos t, sin z sin (180° – A) = sin (90° – d ) sin t, sin z cos (180° – A) = sin (90° – j ) cos (90° – d ) – cos (90° – j ) sin (90°
– d ) cos t или
(1.37)
Формулы (1.37) служат для вычисления зенитного расстояния z и азимута светила A (для любого момента звездного времени s и для любой широты j ) по известному склонению светила d и его часовому углу t = s – a . Иными словами, они служат для перехода от экваториальных координат светила к его горизонтальным координатам. Кроме того, формулы (1.36) и (1.37) используются при вычислении моментов времени восхода и захода светил и их азимутов в эти моменты, а также при решении двух очень важных задач практической астрономии – определения географической широты места наблюдения j и определения местного звездного времени s.
Для перехода от экваториальных координат светила (a и d ) к его эклиптическим координатам (l и b ) и наоборот можно вывести формулы, аналогичные формулам