В тоже время технологическую схему ТЭС можно представить в виде взаимосвязанных локальных контуров регулирования, где объект регулирования представляется апериодическим звеном со значительной нелинейностью и большими постоянными времени. Выделим основные контуры регулирования ТЭС:
1. Контур регулирования температуры в напорном трубопроводе ТЭС
Включает в себя котел, коэффициент передачи которого по нагреву и постоянным времени являются переменными величинами, поскольку при разном числе параллельно работающих котлов температура в общем выходном коллекторе котлов Тк изменяется не пропорционально управляющему воздействию. Например, при одном котле ПТВМ 50 включение одной горелки увеличивает Тк примерно на 4оС с общим времени регулирования 4-5 мин, а при двух котлах – на значительно меньшее значение за счет большего суммарного расхода воды в общем коллекторе.
Результирующая температура воды в сети Тс зависит от долевых значений расходов воды после котла Тк и обратной воды Тобр. Дополнительно учитывается функция смешения потоков воды, определяющая изменение температуры на разнице температур в обратном трубопроводе. В общем случае, она должна отражать также колебательность в упругой среде. Для датчика температуры главным фактором служит его собственная постоянная времени Тдат, составляющая до 10 сек.
Нагрузка ТЭС от теплопотребляющих агрегатов может быть описана передаточной функцией охлаждения теплового агента. Она также нелинейна, если за возмущающее воздействие принять изменение температуры в теплопотребляющем агрегате и расход теплового агента, зависящий как от Тнагр и расхода. Постоянную времени охлаждения Тохл можно ориентировочно принимать 10-40 мин, но в каждом конкретном случае она зависит от протяженности и конфигурации теплопотребления и расхода теплового агента.
2. Контур регулирования напора на выходе с ТЭС
Контур регулирования напора Нвых можно представить в виде двух апериодических звеньев – сетевого насоса и гидравлических сопротивлений котлов и параллельной им линии перепуска. Обе передаточные функции будут нелинейны. Функции содержат квадратичную зависимость напора от частоты вращения. Постоянная времени Т определяется технологическими требованиями из условия плавного регулирования, ее значение составляет до 5 сек. Функция гидросопротивления нелинейна вследствие изменяющегося сопротивления в зависимости от угла открытия клапана линии перепуска. Динамические процессы узла смешения характеризуются очень малыми постоянными времени сжатия жидкой среды и по сравнению с другими показателями регулирования при синтезе регуляторов ими можно пренебречь, т.е. считать функцию пропорциональной.
3. Контур регулирования давления в обратном трубопроводе
Контур предназначен для восполнения утечек теплового агента (подпитки сети). Его передаточная функция по управляющему воздействию нелинейна по той же причине, что и для сетевого насоса – вследствие квадратичной взаимозависимости напора и частоты вращения электропривода. Коэффициент передачи Кобр также зависит от температуры, влияющей на давление в замкнутом трубопроводе с постоянным объемом воды. Возмущающим воздействием на Нобр является также давление в напорном трубопроводе Н. В стационарном режиме внешние возмущающие воздействия приводят к медленным процессам изменения давления, длительность которых измеряется минутами.
4. Контур регулирования температуры воды на входе в котлы
Передаточные функции этого контура отражают гидравлические процессы в узле соединения трубопроводов. Расход в линии рециркуляции Qрец и разность напоров Нрец и Нс связаны нелинейной функцией Фгидр, содержащей изменяющееся общее гидравлическое сопротивление параллельно включаемых котлов. В общем случае эта функция – колебательная с быстрым затуханием процесса.
Температура воды на входе в котлы Твх является функцией смешения двух потоков жидкости с разной температурой. Функция смешения одновременно зависит и от объемов потоков и от изменяющихся независимо одна от другой их температур Тк и Тобр, что свидетельствует о неопределенной нелинейности. Как в случае измерения температуры сетевой воды, постоянной времени, наиболее влияющей на процесс регулирования, является постоянная датчика температуры, составляющая примерно 10 сек.
Исполнительным механизмом служит рециркуляционный насос с регулирующим клапаном (или регулируемым электроприводом) и являющийся апериодическим звеном с постоянной времени примерно 3-5 сек, устанавливаемой преднамеренно для исключения резких изменений суммы расходов Q.
5. Контур регулирования расхода воды через котлы