Другая гипотеза, предложенная для объяснения спектров звёзд поздних классов с яркими линиями, состоит в том, что это — одиночные горячие звёзды, обладающие протяжёнными оболочками большой оптической толщины в непрерывном спектре [1]. Выше мы уже видели, что в случаях звёзд типов Be и WR температуры, найденные по ярким линиям, значительно превосходят спектрофотометрические температуры. С увеличением оптической толщины оболочки это различие между температурами должно возрастать. Если мы допустим, что оптическая толщина оболочки велика (это будет тогда, когда плотность в оболочке медленно убывает с увеличением расстояния от центра звезды), то внутренние части оболочки будут поглощать почти всё излучение звезды и перерабатывать его в кванты низких частот. Здесь возникнет непрерывный спектр позднего класса и появятся эмиссионные линии, соответствующие по своей интенсивности температуре самой звезды. Во внешних частях оболочки, которые будут находиться в основном под воздействием низкотемпературного излучения её внутренних частей, будут существовать атомы неионизованных металлов и молекулярные соединения. Здесь возникнет абсорбционный спектр позднего класса. Изменения блеска и спектра рассматриваемых звёзд можно объяснить изменением мощности выбрасывания вещества из них.
Если оптическая толщина оболочки станет очень большой, то эмиссионные линии наблюдаться не будут. Таким путём, возможно, образуются «обычные» холодные сверхгиганты. Как известно, массы и светимости сверхгигантов класса M и звёзд классов O и B примерно одинаковы. Одно это заставляет думать, что указанные звёзды различаются между собой лишь устройством оболочек.
Наконец, третья гипотеза видит причину появления ярких линий в спектрах некоторых типов холодных звёзд в действии ударной волны (см. [2]). Эта гипотеза представляется очень вероятной по отношению к долгопериодическим переменным. При прохождении ударной волны через атмосферу звезды происходит разогрев газа, приводящий к усилению ионизации атомов. После прохождения ударной волны газ высвечивается, т.е. происходят рекомбинации и затем свечение в спектральных линиях. Поэтому движение ударной волны в атмосфере звезды проявляется как движение слоя светящегося газа. Происходящее при этом изменение спектра очень похоже на изменение спектра долгопериодической переменной. По наблюдаемому смещению ярких линий в спектре звезды можно определить скорость ударной волны. Это даёт возможность найти температуру в слое нагретого газа и количество энергии, излучаемой им в спектральных линиях. Для долгопериодических переменных вычисленные и полученные из наблюдений количества этой энергии по порядку величины согласуются между собой.
Наряду с рассмотренными выше звёздами, обладающими высокими светимостями, наблюдениями также обнаружены звёзды-карлики поздних классов с эмиссионными линиями: звёзды типов T Тельца и UV Кита. Блеск и спектр этих звёзд меняется с течением времени. Звёзды типа T Тельца относятся к спектральным классам G — M и имеют яркие линии H, Ca II, Fe II и др. С фиолетовой стороны ярких линий видны линии поглощения. Судя по профилям спектральных линий, из звёзд типа T Тельца происходит истечение вещества. Почти все известные нам звёзды типа T Тельца входят в звёздные ассоциации (так называемые «T-ассоциации»), на основании чего делается вывод о молодости этих звёзд.
Удивительная особенность звёзд типа T Тельца и родственных им звёзд заключается в том, что в эпоху возрастания блеска звезды вместе с появлением и усилением эмиссионных линий возникает также весьма сильный непрерывный спектр, накладывающийся на обычный непрерывный спектр с линиями поглощения. Тот факт, что новый непрерывный спектр ослабляет все линии поглощения и не влечёт за собой появления новых линий поглощения, говорит о возникновении его в самых верхних слоях атмосферы звезды. О том же свидетельствует появление эмиссионных линий вместе с появлением эмиссии в непрерывном спектре.
Звёзды типа T Тельца часто связаны с туманностями, напоминающими по внешнему виду хвосты комет. Эти туманности, называемые обычно «кометарными», являются переменными. Однако яркость туманности меняется независимо от изменения яркости звезды. Иногда непрерывный спектр туманности в синей и фиолетовой областях значительно сильнее спектра связанной с ней звезды.