Читаем Курс теоретической астрофизики полностью

В случае звёзд UV Кита вспышка происходит в течение всего нескольких минут, причём за это время блеск звезды возрастает на несколько звёздных величин. Столь быстрое и сильное увеличение светимости звезды не может быть объяснено доставкой энергии из недр звезды наружу теплопроводностью или лучистым переносом. Исходя из этого, В. А. Амбарцумян [4] высказал предположение о том, что вспышка вызвана выбросом из внутренних слоёв звезды части вещества, являющегося источником звёздной энергии. Быстрый распад этого вещества (подобный ядерному) приводит к освобождению некоторой энергии, превращающейся затем в излучение. По его мнению, аналогичным путём возникает также ультрафиолетовая эмиссия звёзд типа T Тельца и связанных с ними кометарных туманностей.

Для объяснения дополнительного излучения звёзд типов T Тельца и UV Кита были выдвинуты также другие гипотезы (см. [5] и [6]).

7. Вспыхивающие звёзды.

Остановимся на звёздах типа UV Кита, которые уже упоминались ранее. Именно эти звёзды (и похожие на них) имеются в виду, когда говорится о «вспыхивающих звёздах», хотя вспышкам разных масштабов подвержены и другие звёзды (например, новые и сверхновые, рассматриваемые в следующих параграфах). Наблюдательные данные о вспыхивающих звёздах и гипотезы об их природе изложены в ряде книг (см. [6]—[8]).

Звёзды типа UV Кита — карликовые звёзды спектрального класса M (преимущественно dM3e—dM6e). К настоящему времени их известно более 100. Вследствие слабости блеска, они наблюдаются лишь в ближайших окрестностях Солнца. Если считать, что концентрация таких звёзд везде одинакова, то их общее число в Галактике оказывается очень большим — порядка 10.

При вспышке звезды типа UV Кита возрастание блеска происходит очень быстро (за время порядка минуты), а уменьшение — более медленно. Интервалы между вспышками измеряются часами, причём они различны для одной и той же звезды. Во время вспышки на спектр звезды накладывается дополнительный непрерывный спектр с эмиссионными линиями. Благодаря этому звезда становится заметно голубее, о чем свидетельствует трехцветная фотометрия в лучах U, B, V. Амплитуды изменения блеска в этих лучах всегда удовлетворяют неравенствам

U

B

V

.

Существование его вполне понятно, так как дополнительный спектр накладывается на спектр очень холодной звезды (с поверхностной температурой 2 000 — 3 000 K), у которой яркость U-области гораздо меньше яркости B-области, а та в свою очередь меньше яркости V-области. Полная энергия, излучаемая во время вспышки, составляет 10^3—10^3^2 эрг. Поскольку светимость звезды в спокойном состоянии порядка 10^2 эрг/с, то во время вспышек излучается примерно 0,1—1% энергии, излучаемой звездой в промежутках между вспышками.

Картина явлений, наблюдаемых при вспышке звезды типа UV Кита, в общих чертах согласуется с представлением о том, что во время вспышки к излучению звезды добавляется излучение горячего газа. В частности, в пользу такого представления говорит наличие в спектре бальмеровского скачка, имеющего рекомбинационное происхождение. Однако во время максимума блеска в излучение может входить и некоторая нетепловая компонента.

При теоретическом исследовании вспышек сначала предполагалось, что они происходят в хромосфере, причём область вспышки прозрачна для излучения в непрерывном спектре и непрозрачна для излучения в линиях. Однако результаты расчёта оптических характеристик излучающего газа для этого случая (при Te25 000 K и ne10^1^3 см^3) удаётся согласовать с наблюдательными данными лишь для небольшой части вспышек. К тому же объём области вспышек оказывается чрезмерно большим.

Поэтому потом стали считать, что вспышка происходит в более глубоких слоях звезды — в переходной области между хромосферой и фотосферой (где ne10^1…10^1 см^3). Излучение газа при таких условиях отличается двумя существенными особенностями: 1) при низких температурах (меньше 10 000 K) к излучению атома водорода добавляется излучение его отрицательного иона; 2) при более высоких температурах газ становится частично непрозрачным в непрерывном спектре (вследствие быстрого роста населённостей уровней с повышением температуры). Расчёты показывают, что в данном случае теория позволяет объяснить основные наблюдаемые характеристики вспышек: диаграмму U—B, B—V бальмеровские скачки и др. При этом геометрическая толщина излучающего слоя оказывается порядка 10…100 км, а его площадь для большинства вспышек не превышает 1% площади диска звезды.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука