Читаем Курс теоретической астрофизики полностью

Два последних заключения сделаны на основании формул (26.9) и (26.10) предыдущей главы.

При усилении выбрасывания вещества из звезды вместе с указанными изменениями непрерывного спектра должно также наблюдаться возрастание энергии, излучаемой оболочкой в спектральных линиях. Все эти эффекты будут тем больше, чем выше температура звезды и чем больше оптическая толщина оболочки за границей лаймановской серии.

Рис. 36

При помощи написанных выше формул может быть дана подробная интерпретация непрерывного спектра звёзд Be. В. Г. Горбацкий [2] сделал это для звезды γ Кассиопеи, принадлежащей к числу наиболее известных из рассматриваемых звёзд. С 1936 г. по 1941 г. происходили весьма сильные изменения блеска и спектра этой звезды. В течение указанного периода блеск звезды трижды возрастал. Вместе с возрастанием блеска происходило уменьшение спектрофотометрической температуры, уменьшение величины бальмеровского скачка и возрастание интенсивности бальмеровских линий (рис. 36). Все это может быть объяснено тем, что мощность истечения вещества из звезды трижды возрастала, а затем убывала. Иными словами, звезда сбросила с себя последовательно три оболочки. Из сравнения теории с наблюдениями были определены основные параметры звезды и оболочки. Оказалось, что радиус звезды равен трём радиусам Солнца, температура звезды равна 34 000 K, число атомов водорода в 1 см³ вблизи поверхности звезды порядка 10¹²-10¹³ и средняя электронная температура оболочки 𝑇𝑒≈15 000-20 000 K.

Для многих звёзд типа Be были измерены бальмеровские скачки и спектрофотометрические температуры в разных областях спектра. Это позволило определить доли энергии, излучаемые звездой и оболочкой, концентрации атомов в оболочке и количество вещества, выбрасываемое звездой за год (оказавшееся порядка 10⁻⁷ 𝑀 для звёзд типа Be ранних подклассов).

5. Звёзды типа Вольфа — Райе.

Наличие в спектрах звёзд типа WR широких ярких линий, не меняющихся заметно с течением времени, вызвало гипотезу о стационарном истечении вещества из этих звёзд. Так как яркая линия симметрична относительно центральной частоты и иногда ограничена с фиолетовой стороны линией поглощения, то естественно считать, что истечение вещества является радиальным. При этом яркая линия образуется во всей протяжённой оболочке, а линия поглощения — в части оболочки, приближающейся к наблюдателю. Мы уже видели, что в случае истечения вещества с постоянной скоростью яркая линия должна иметь прямоугольный профиль. Линии с такими профилями действительно встречаются в спектрах звёзд WR. Однако чаще наблюдаются линии с закруглёнными профилями, которые можно объяснить при помощи формулы (28.6) как ускоренным или замедленным движением выброшенных атомов, так и непрозрачностью оболочки для излучения в линии.

Слабость линий поглощении в спектрах звёзд WR может быть вызвана не только малостью оптической толщины оболочки в линии, но и заполнением линии поглощения эмиссионной линией. Однако в тех случаях, когда нижний уровень метастабилен, линия поглощения весьма сильна. Примером может служить линия поглощения λ 3889 Å, возникающая из метастабильного состояния 2³𝑆 нейтрального гелия. Сильное поглощение в таких линиях объясняется накоплением атомов в метастабильных состояниях вследствие малости коэффициента дилюции излучения и плотности вещества в протяжённой оболочке.

Очевидно, что в случае радиального истечения вещества из звезды ширина эмиссионной линии Δλ должна быть пропорциональна длине волны λ. Такая зависимость между этими величинами действительно соблюдается для спектров звёзд WR (что является одним из наиболее веских доводов в пользу гипотезы истечения).

В таблице 44 для примера приведены измеренные и вычисленные значения Δλ для трёх звёзд WR (под номером звезды дан принятый коэффициент пропорциональности между Δλ и λ. Найденные по ширине эмиссионных линий скорости истечения вещества из звёзд WR оказываются порядка 1 000—2 000 км/с.


Таблица 44


Ширины эмиссионных линий в


спектрах звёзд WR (в ангстремах)


λ, Å

192 163


𝑘=0,00833

50 896


𝑘=0,00961

191 765


𝑘=0,00883


изм.

выч.

изм.

выч.

изм.

выч.


6563

58,0

54,7

74,2

63,1

57,5

57,9


4861

41,2

40,5

44,8

46,7

43,9

42,9


4340

33,4

36,2

36,0

41,7

37,8

38,3


Выброшенное из звезды вещество может двигаться замедленно или ускоренно под действием притяжения звезды и силы светового давления. Закон изменения скорости 𝑣 с возрастанием расстояния 𝑟 от центра звезды определяет собой распределение плотности вещества в оболочке. Чтобы найти зависимость плотности ρ от скорости 𝑣, рассмотрим протекание вещества через сферу радиуса 𝑟. Очевидно, что количество вещества, протекающее через эту сферу за время 𝑑𝑡, будет равно


𝑑𝑀

=

4π𝑟²

ρ(𝑟)

𝑣(𝑟)

𝑑𝑡

.


(28.38)


При стационарном движении вещества 𝑑𝑀/𝑑𝑡=const и поэтому из (28.38) имеем


ρ(𝑟)

~

1

𝑟²𝑣(𝑟)

.


(28.39)


Если скорость движения постоянна, то


ρ(𝑟)

~

1

𝑟²

.


(28.40)


Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос