Читаем Курс теоретической астрофизики полностью

Такой характер спектра поглощения межзвёздного газа объясняется тем, что степень возбуждения атомов и молекул в межзвёздном пространстве очень низка. Поэтому линии, возникающие из возбуждённых состояний, чрезвычайно слабы и наблюдаться не могут. Спектр поглощения межзвёздного газа должен состоять только из линий основных серий, и мы обнаруживаем те из них, которые находятся в видимой части спектра. Линии основных серий многих распространённых элементов расположены в ультра фиолетовой части спектра (912 Å<λ<2000 Å) и их можно наблюдать с помощью космических аппаратов. Линии, лежащие за границей лаймановской серии (λ<912 Å), наблюдаться не могут вследствие поглощения межзвёздным; водородом.

Следует подчеркнуть большое различие в степени ионизации и степени возбуждения атомов в межзвёздном пространстве. Как мы видели, степень ионизации межзвёздного газа довольно велика. Объясняется это тем, что малость плотности излучения компенсируется малостью концентрации свободных электронов. Иными словами, редко происходят фотоионизации атомов, но редко совершаются и обратные процессы — рекомбинации. Иначе обстоит дело в случае возбуждения атомов. Атомы попадают в возбуждённые состояния (под действием излучения звёзд или при столкновениях) также очень редко. Однако из возбуждённых состояний быстро совершаются спонтанные переходы (не зависящие, в отличие от рекомбинаций, от физических условий). Поэтому степень возбуждения атомов в межзвёздном пространстве оказывается чрезвычайно малой.

Изучение межзвёздных линий поглощения даёт возможность определить многие характеристики межзвёздного газа. Делается это путём сравнения теоретических и наблюдённых профилей линий и их эквивалентных ширин.

Нахождение теоретических профилей межзвёздных линий поглощения не представляет больших трудностей, так как при этом можно не принимать во внимание рассеянное излучение в линии. Обозначим через 𝐼₀ интенсивность излучения, выходящего из атмосферы звезды, и через 𝐼λ — интенсивность излучения с длиной волны λ, приходящего к наблюдателю. В данном случае эти величины связаны простым соотношением

𝐼

λ

=

𝐼₀

𝑒

λ

,

(33.22)

где τλ — оптическое расстояние от звезды до наблюдателя. Величину 𝐼₀ можно считать не зависящей от λ, если межзвёздная линия поглощения не накладывается на линию поглощения, возникающую в атмосфере звезды. Эквивалентная ширина межзвёздной линии поглощения будет определяться формулой

𝑊

λ

=

𝐼₀-𝐼λ

𝐼₀

𝑑λ

=

1

-

𝑒

λ

𝑑λ

.

(33.23)

Для вычислений величин 𝐼λ и 𝑊λ по формулам (33.22) и (33.23) надо знать коэффициент поглощения в спектральной линии. В звёздных атмосферах он определяется затуханием излучения и тепловым движением атомов. Однако в случае межзвёздного газа затухание излучения можно не учитывать, так как поглощение происходит в основном только в центральных частях линии. Поэтому для коэффициента поглощения, рассчитанного на один атом, мы можем взять выражение

𝑘

λ

=

𝑘₀

exp

-

λ-λ₀

Δλ𝐷

⎞²

,

(33.24)

где 𝑘₀ — коэффициент поглощения в центре линии и Δλ𝐷 — доплеровская полуширина. На основании формулы (12.6) имеем

𝑘₀

=

√π𝑒²λ₀²

𝑚𝑐²Δλ𝐷

𝑓

,

(33.25)

где 𝑓 — сила осциллятора. Как мы увидим дальше, тепловые скорости атомов гораздо меньше скоростей хаотического движения межзвёздного газа. Вследствие этого в известном выражении для доплеровской полуширины линии

Δ

λ

𝐷

=

λ₀

𝑣

𝑐

(33.26)

мы под 𝑣 должны понимать среднюю скорость хаотического движения.

Если величина 𝑘λ задана, то оптическое расстояние τλ можно найти по формуле

τ

λ

=

𝑘

λ

𝑟₀

0

𝑛

𝑑𝑟

=

𝑘

λ

𝑁

,

(33.27)

где 𝑛 — число поглощающих атомов в 1 см³ и 𝑟₀ — расстояние между звездой и наблюдателем. Для эквивалентной ширины линии теперь получаем

𝑊

λ

+

Δ

λ

𝐷

+∞

-∞

1

-

exp

-

𝑘₀

𝑁

𝑒

-𝑥²

𝑑𝑥

,

(33.28)

где обозначено

𝑥

=

λ-λ₀

Δλ𝐷

.

При малых значениях величины τ₀=𝑘₀𝑁 из формулы (33.28) находим

𝑊

λ

=

π

Δ

λ

𝐷

τ₀

1

-

τ₀

2√2

+

τ₀²

6√3

-

.

(33.29)

При больших значениях τ₀ имеем асимптотическое разложение

𝑊

λ

=

2

Δ

λ

𝐷

ln

τ₀

1

+

0,2886

ln τ₀

-

0,1355

(ln τ₀)²

+

.

(33.30)

Если зависимость между 𝑊λ и 𝑁, даваемую соотношением (33.28), изобразить на графике, то мы получим кривую роста для межзвёздной линии поглощения. При 𝑘₀𝑁≪1. величина 𝑊λ пропорциональна 𝑁 и не зависит от Δλ𝐷. При 𝑘₀𝑁≫1 величина 𝑊λ очень слабо зависит от 𝑁, но приблизительно пропорциональна Δλ𝐷. Очевидно, что при очень больших значениях 𝑘₀𝑁 (примерно при 𝑘₀𝑁>10³) формулу (33.28) применять нельзя, так как в этом случае надо учитывать затухание излучения.

Пользуясь полученными из наблюдений значениями эквивалентной ширины линии и кривой роста, можно определить значения величин 𝑁 и Δλ𝐷. Вообще говоря, мы имеем одно уравнение с двумя неизвестными, но при 𝑘₀𝑁≪1 можно найти 𝑁, не зная Δλ𝐷. Разделив 𝑁 на расстояние до звезды 𝑟₀, мы получаем среднюю концентрацию поглощающих атомов 𝑛. Переходя от одной стадии ионизации к другой при помощи ионизационной формулы, находим среднюю концентрацию атомов данного элемента. Таким путём определяется химический состав межзвёздного газа.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос