Читаем Курс теоретической астрофизики полностью

Эмиссионная линия Lα возникает в верхних слоях хромосферы, где температура растёт с высотой. В этих слоях атомы возбуждаются электронным ударом и при последующих спонтанных переходах образуются кванты в спектральных линиях. Однако в большинстве случаев выйти беспрепятственно из хромосферы Lα-кванты не могут, так как оптическая глубина хромосферных слоёв в центральной частоте этой линии велика. Поэтому в хромосфере происходит диффузия Lα-излучения. Как было выяснено ранее (в § 11), эта диффузия сопровождается перераспределением излучения по частотам внутри линии. При таком процессе преимущественная доля квантов выходит наружу в далёких от центра частях линии, для которых оптическая глубина сравнительно мала. В центральных же частях линии вследствие сильного поглощения выходит наружу меньшая доля квантов. Следовательно, эмиссионная линия может иметь провал в центральной области. Именно такой провал и наблюдается у линии Lα солнечного спектра.

Для определения теоретических профилей линии Lα мы можем воспользоваться уравнениями (11.9) и (11.10) с некоторыми изменениями. Указанные уравнения описывают диффузию излучения в спектральной линии с полным перераспределением по частотам при возникновении квантов в линии из непрерывного спектра. В результате решения этих уравнений определяется контур линии поглощения в спектре звезды. Чтобы принять во внимание образование квантов в линии за счёт столкновений, надо ввести в уравнение (11.10) некоторый дополнительный член. Тогда мы получим линию поглощения с усиленной интенсивностью в центральной области или даже линию поглощения с наложенной на неё эмиссионной линией. Очевидно, что такие теоретические профили будут относиться не только к линии Lα, но и к другим резонансным линиям солнечного спектра (в частности, к линиям H и К 𝙲𝚊 II).

Для простоты мы найдём только профиль эмиссионной линии, которая накладывается на линию поглощения. В данном случае свободный член интегрального уравнения (11.14), определяющего функцию 𝑆(τ), обусловлен только столкновениями. Так как этот механизм возбуждения линий ослабевает с увеличением оптической глубины, то мы примем, что


𝑔(τ)

=

𝐶𝑒

-𝑚τ

,


(16.35)


где 𝐶 и τ — постоянные. Интенсивность излучения частоты ν внутри линии, выходящего под углом arccos μ к нормали, выражается через функцию 𝑆(τ) формулой


𝐼

ν

(0,ν)

=

ην

ην+1


0

𝑆(τ)

𝑒

-𝑥τ

𝑥

𝑑τ

,


(16.36)


где ην — отношение коэффициента поглощения в линии к коэффициенту поглощения в непрерывном спектре и 𝑥=(ην+1)/μ [см. для сравнения формулу (11.11)]. Однако в том случае, когда 𝑔(τ) является экспонентой, для нахождения величины 𝐼ν(0,ν) нет необходимости в определении функции 𝑆(τ). На основании формулы (3.19) имеем


𝐼

ν

(0,ν)

=

𝐶

ην

ην+1


φ

1

𝑚

⎠ φ

μ

ην+1

1+𝑚

μ

ην+1

,


(16.37)


где функция φ(𝑧) определяется уравнением (11.27).

Уравнение (11.27) может быть легко решено численными методами. В. В. Иванов сделал это при доплеровском коэффициенте поглощения в линии, пренебрегая поглощением в непрерывном спектре. С помощью полученной таблицы функции φ(𝑧) по формуле (16.37) были определены профили эмиссионных линий. На рис. 20 для примера приведены некоторые результаты для центра диска (μ=1). По оси абсцисс отложено расстояние от центра линии в доплеровских ширинах, по оси ординат — интенсивность по отношению к центральной интенсивности. Профили построены для значений величины 𝑚/ην₀, равных ∞, 2, 0,5, 0,3, 0,2, и 0,15, причём линия тем шире, чем меньше эта величина. Мы видим, что теоретические профили эмиссионных линий весьма похожи на профили линии Lα, полученные из наблюдений (см. рис. 19, а).

Рис. 20

Теория даёт также профили эмиссионных линий на разных расстояниях от центра диска. Оказывается, что при переходе от центра диска к краю центральный провал линии становится глубже, а расстояние между максимумами возрастает. Примерно так же изменяется профиль линии Lα на диске Солнца и согласно наблюдениям.

Сравнение теории с наблюдениями даёт возможность определить значения параметров 𝐶 и 𝑚. В свою очередь это позволяет найти распределение электронной концентрации и температуры в верхних слоях хромосферы, от которых указанные параметры зависят. Следует, однако, иметь в виду, что при получении формулы (16.37) предполагалось постоянство профиля коэффициента поглощения в хромосфере. В действительности же он меняется с глубиной вследствие изменения температуры.

В более подробной теории образования резонансных линий в спектре Солнца принимаются во внимание различные причины, влияющие на населённость второго уровня атома (см. [5]).

§ 17. Корона

1. Излучение короны.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос