Читаем Квант. Эйнштейн, Бор и великий спор о природе реальности полностью

Гейзенберг верил, что его будущее неразрывно связано с тем, что контролирует территорию атомов: частицы или волны, прерывность или непрерывность. Он хотел опубликовать эту работу как можно скорее и бросить вызов утверждению Шредингера, что матричная механика unanschaulich, не наглядна, поэтому несостоятельна. Шредингер настолько же не любил прерывность и частицы, как Гейзенберг ненавидел непрерывность и волны. Вооружившись принципом неопределенности и тем, что, как он полагал, является правильной интерпретацией квантовой механики, Гейзенберг перешел в наступление. Он нанес удар конкуренту в сноске к своей статье: “Шредингер называет квантовую механику формальной теорией, отпугивающей и даже отталкивающей отсутствием наглядности и абстрактностью. Конечно, невозможно переоценить того глубокого математического (и с этой точки зрения физического) проникновения в сущность квантово-механических законов, которое дала нам теория Шредингера. Однако в принципиальных физических вопросах общедоступная наглядность волновой механики увела нас, по моему мнению, с прямой дороги, проложенной работами Эйнштейна и де Бройля, с одной стороны, и работами Бора и квантовой механикой, с другой”59.

Двадцать второго марта 1927 года Гейзенберг отправил статью “О наглядном содержании квантово-теоретической кинематики и механики” в “Цайтшрифт фюр физик” — любимый журнал теоретиков, занимающихся квантовой физикой60. “Я поссорился с Бором”, — написал он Паули двумя неделями позже61. “Гиперболизируя ту или иную сторону вопроса, — возмущался Гейзенберг, — можно много говорить, но не сказать ничего нового”. Гейзенберг был уверен: со Шредингером и его волновой механикой он разобрался раз и навсегда. Но теперь ему предстояло встретиться с гораздо более сильным оппонентом.


Пока Гейзенберг в Копенгагене был занят анализом следствий из принципа неопределенности, на лыжных склонах Норвегии Бор пришел к принципу дополнительности. Для него это была не просто очередная теория или малозначимое утверждение, а необходимая концептуальная основа, которой до сих пор так не хватало для описания странной картины квантового мира. Бор верил, что дополнительность может разъяснить и парадоксальную природу корпускулярно-волнового дуализма. Волновые и корпускулярные свойства электронов и фотонов, материи и излучения и были взаимно исключающими, но дополняющими друг друга проявлениями одного и того же явления. Волны и частицы были двумя сторонами одной и той же медали.

Дополнительность умело обходит трудности, возникающие из-за необходимости использовать для описания неклассического мира два абсолютно несовместимых классических понятия: волны и частицы. Согласно Бору, для полного описания квантовой реальности необходимы и частицы, и волны. Каждое из описаний само по себе верно частично. Фотоны рисуют одну картину распространения света, волны — другую. Они существуют рядом. Но имеются ограничения, позволяющие избежать противоречий. В данный момент наблюдатель может видеть только одну картину. Никогда ни один эксперимент не сможет одновременно зафиксировать и частицы, и волны. Бор утверждал, что “одной картины недостаточно, чтобы осмыслить сведения, полученные в разных условиях, они должны рассматриваться как дополнительные, в том смысле, что только целостное представление о явлении дает всю возможную и исчерпывающую информацию об объектах”62.

Бор увидел в соотношениях неопределенности, pq >= h/2 и Et >= h/2, подтверждение своих, еще нечетко сформулированных, идей, чего не заметил Гейзенберг, ослепленный резким неприятием волн и непрерывности. Корпускулярно-волновой дуализм выражается формулами Планка Е = h и де Бройля p = h/. Энергия и импульс — понятия, которые обычно ассоциируются с частицами, тогда как частота и длина волны — характеристики волн. Каждое из этих уравнений содержит одну величину, характеризующую частицу, и одну характеристику волны. Бор мучительно пытался понять, что стоит за объединением частиц и волн в одном уравнении. Ведь, в конце концов, частицы и волны — абсолютно разные физические сущности.

Исправляя расчеты Гейзенберга, относящиеся к мысленному эксперименту с микроскопом, Бор понял: то же самое можно сказать и о соотношениях неопределенности. Это открытие навело его на мысль, что принцип неопределенности показывает, до какой степени два дополняющих друг друга, но взаимоисключающих классических понятия (либо частица и волна, либо импульс и координата) могут, не приводя к противоречиям, использоваться в квантовом мире одновременно63.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже