Соотношения неопределенности также подразумевают, что необходимо сделать выбор, какое из описаний использовать: то, которое Бор называл “причинным”, основанным на законах сохранения энергии и импульса (
Было еще одно расхождение. Принцип неопределенности заставил Гейзенберга задуматься над вопросом, в какой степени такие классические понятия, как “частица”, “волна”, “координата”, “импульс” и “траектория” применимы в атомном мире, а Бор утверждал, что “интерпретация экспериментальных данных по существу основывается на классических представлениях”64
. Гейзенберг настаивал на операционном определении понятий (значение понятия определяется при измерении), а Бор возражал, что значения понятий уже определены тем, как они используются в классической физике. “Каждое описание естественных процессов, — писал он в 1923 году, — должно основываться на понятиях, введенных и определенных классической теорией”65. Вне зависимости от ограничений, накладываемых принципом неопределенности, эти понятия нельзя заменить другими уже просто потому, что все экспериментальные данные, их обсуждение и интерпретация, позволяющая в лабораториях проверить теории, по необходимости использует язык и понятия классической физики.Гейзенберг ставил вопрос так: почему эти понятия должны сохраняться, если классическая физика оказалась непригодной на атомных масштабах? “Почему бы просто не сказать, что мы не можем использовать эти понятия с достаточной степенью точности, поэтому имеется принцип неопределенности, и, следовательно, надо в какой-то мере отказаться от самих этих понятий?” — доказывал он весной 1927 года66
. Когда дело касается квантов, “мы должны понимать, что наши слова не годятся”. Если они не годятся, то Гейзенберг единственно разумным выходом считал возможность укрыться за формализмом квантовой механики. В конце концов, утверждал он, “новая математическая схема ничем не хуже других, поскольку именно новый математический подход определяет, что здесь может происходить, а что нет”67.Бора это не убеждало. Для сбора информации о квантовом мире, указывал он, мы ставим эксперименты. Их результаты отмечаются вспышками света на экране, щелчками счетчика Гейгера, колебаниями стрелки вольтметра и так далее. Все эти приборы принадлежат повседневному, обычному миру физической лаборатории, однако только с их помощью любое явление на квантовом уровне можно обнаружить, измерить и описать. Именно взаимодействие между лабораторным прибором и микроскопическим физическим объектом — -частицей или электроном — приводит к тому, что начинает работать счетчик Гейгера или двигаться стрелка вольтметра.
Любое такое взаимодействие включает в себя обмен по крайней мере одним квантом энергии. Поэтому, утверждал Бор, “невозможно провести четкую границу между поведением атомных объектов и их взаимодействием с измерительными приборами, служащими для определения условий, при которых данное явление может иметь место”68
. Другими словами, невозможно, как в классической физике, провести границу между наблюдателем и наблюдаемым явлением, между прибором, который мы используем для измерения, и тем, что измеряется.Бор был непоколебим: именно специфика эксперимента позволяет проявиться корпускулярным либо волновым свойствам электрона, светового луча, материи или излучения. Поскольку частицы и волны являются дополнительными, но взаимоисключающими аспектами одного и того же явления, они не могут проявиться одновременно ни в одном реальном или мысленном эксперименте. Если выбрать прибор для изучения интерференции света (такой, как в знаменитом опыте Юнга с двумя щелями), заявит о себе волновая природа света. Если освещается металлическая поверхность в эксперименте, направленном на изучение фотоэффекта, мы увидим, что свет ведет себя как частица. Бессмысленно спрашивать, является свет волной или частицей. Квантовая механика, говорил Бор, не дает возможности узнать, чем