Читаем Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи полностью

Достаточно подробно генезис этой теории был рассмотрен в монографии Г. В. Быкова [5]. Поэтому, избегая повторений, мы остановимся в дальнейшем только на тех вопросах, которые не были должным образом освещены в литературе.

Наибольшее распространение концепция резонанса нашла в органической химии. При этом популярность ее была так велика, что она часто отождествлялась с методом ВС. Когда же гипертрофирование роли резонанса электронных структур было подвергнуто критике, такое отождествление отрицательно сказалось на отношении многих химиков к методу ВС и привело к неправильному пониманию роли и логической структуры последнего. Историческое значение концепции резонанса состоит, во-первых, в том, что она определила одно из возможных направлений развития метода ВС. Во-вторых, она позволила глубже понять соотношение между классической и квантовой теориями строения химических соединений, вскрыв те стороны физической и химической реальности, которые не могли быть адекватно отражены классической теорией строения.

Чтобы яснее представить роль резонанса в логической структуре этого метода, попытаемся ответить на следующий вопрос: возможен ли "безрезонансный" метод ВС, и если да, то каковы будут его особенности. С ретроспективной точки зрения иной возможный путь развития метода ВС мог состоять в сохранении приближения идеального спаривания, но при этом пришлось бы обобщить концепцию гибридизации, т. е. использовать в качестве базисных функций не атомные, пусть даже гибридные (в обычном смысле слова) орбитали, а их линейные комбинации, вообще говоря, не ортогональные[19]. Уравнениями, определяющими эти линейные комбинации, являются уравнения Годдарда [43]. В некотором смысле этот метод, названный Годдардом "обобщенным методом ВС", является одновременно и обобщением метода МО. Иными словами, концепция резонанса служила не только одним из способов выражения метода ВС, который придал мышлению химиков большую гибкость, но и явилась своеобразным водоразделом, отделяющим два наиболее распространенных метода квантовой химии, ВС и МО, так как "безрезонансный" вариант метода ВС представляет собой такую модификацию последнего, которая придает ему черты метода МО.

Проиллюстрируем этот тезис на примере молекулы бензола. В методе ВС для описания -электронной системы молекулы бензола необходим учет пяти независимых структур, характеризуемых диаграммами I-V (см. рис. 16). Эти диаграммы могут быть построены с использованием схем и таблиц Юнга.

Антисимметричная собственная функция оператора может быть получена из произведения координатной и спиновой функций действием оператора Годдарда

(3.50)

где

(3.51a)

(3.51б)

(3.51в)

где — операторы перестановки пространственных координат; — операторы перестановки спиновых переменных; — матричные элементы неприводимого представления [] группы перестановок N-электронов; f — размерность этого представления.

В методе Годдарда используется специальный выбор функций и в виде произведений одноэлектронных функций:

(3.52)

(3.53)

Многоэлектронной волновой функции метода Годдарда можно сопоставить определенную схему спинового спаривания, которой будет соответствовать некоторая обобщенная диаграмма Румера[20]. Действительно, как показал Годдард, действие оператора на произведение и эквивалентно действию оператора Юнга на X с последующей антисимметризацией:

(3.54)

что при соответствующем выборе X полностью соответствует построению многоэлектронной функции метода ВС. Например, для -электронной системы бензола выбору

будет соответствовать схема спинового спаривания, выражаемая следующей диаграммой:

(3.56)

Таким образом, вместо пяти диаграмм в обобщенном методе ВС мы имеем только одну. Эта диаграмма совпадает по внешнему виду с диаграммой V (см. рис. 16). Однако в то время как диаграммы I-V характеризуют спаривание атомных -орбиталей, в диаграмме (3.56) спаренными следует считать линейные комбинации последних (молекулярные орбитали) k, которые определяются уравнениями вида[21]

(3.57)

Существенно, что этим уравнениям может быть дана интерпретация в рамках модели независимых частиц (МНЧ), т. е. отдельному электрону можно приписать определенное состояние, характеризуемое орбиталью k. Следуя Годдарду, можно указать три условия, обеспечивающие возможность такой интерпретации:

   1. N электронам сопоставляется не более чем N различных орбиталей;

   2. каждая орбиталь должна быть собственной функцией некоторого эффективного гамильтониана, определяющего движение электрона в поле ядер и в усредненном поле других электронов;

   3. это усредненное поле может быть нелокальным, но оно должно быть самосогласованным.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже