Читаем Квантовая хромодинамика: Введение в теорию кварков и глюонов полностью

Предположим, что имеется n легких кварков; рассмотрим только их, а возможным существованием тяжелых кварков (не относящихся к изучаемой проблеме) пренебрежем. Можно взять два легких кварка n=2(u,d) и обсуждать "проблему SU(2)U(1)" или три легких кварка n=3(u,d,s) и говорить о "проблеме SU(3)U(1)". Возьмем n²-1 матриц, действующих в пространстве ароматов λ1,…,λn2-1 . Для группы SU(3) они совпадают с матрицами Гелл-Манна, а для группы SU(2) - с матрицами Паули. Любую эрмитову матрицу размерности n×n можно выразить в виде комбинации n² матриц λ1,…,λn2-1, λ0≡1. Удобно принять, что индексы a, b, c пробегают ряд значений от 1 до n-1 а индексы α, β, δ принимают значения 0,1,…,n²-1. Благодаря только что сформулированному свойству полноты матриц λi достаточно рассмотреть токи

A

μ

α

=

q

ƒ

γ

μ

γ

5

λ

α

ƒƒ'

q

ƒ'

;

из них, конечно, только ток A0 обладает аномалией. Пусть N1(x),…,Nk(x) — локальные операторы (простые или составные). Рассмотрим теперь величину

⟨vac|TA

μ

α

(x)

 

j

N

j

(x

j

)|vac⟩

(37.3)

В случае α≠0 из теоремы Голдстоуна следует, что в киральном пределе массы псевдоскалярных частиц Pa , имеющих квантовые числа токов Aa , равны нулю. Вводя общий для всех кварковых масс параметр ε и полагая mƒ=εrƒ где коэффициент rƒ(ƒ=1,…,n) в киральном пределе остается постоянным, получаем

m

2

a

m

2

Pa

≈ε.

(37.4)

Это было показано в § 31 (уравнения (31.4) и (31.5)). Следовательно, в этом пределе выражение (37.3) при α=a имеет полюс в точке q²=0. Точнее говоря, это означает, что в киральном пределе, т.е. при нулевых значениях масс кварков, справедливо равенство

 

lim

q→0

𝑑

4

x

e

iq⋅x

μ

⟨vac|TA

μ

α

(x)

 

j

N

j

(x)

j

|vac⟩

≈(constant)q

μ

1

.

(37.5)

Если пренебречь аномалиями, то вывод формулы (37.4) можно повторить и для случая α=0, откуда мы получили бы, что частица U(1) также в киральном пределе имеет нулевую массу [145]. В действительности это утверждение более точно сформулировано в работе [259], где получено неравенство m0≤√n. Это неравенство свидетельствует о неправильности всех наших построений, так как для группы SU(2) выполняется соотношение mη≫√2mπ . Для группы SU(2) масса mη' также нарушает это ограничение. В дополнение к этому было доказано [50], что при таких условиях распад η→3π и запрещен, что также противоречит эксперименту. Следовательно, нужно предположить, что выражение (37.3) для случая α=0 в пределе ε→0 остается регулярным. Если бы мы могли доказать это, мы бы решили проблему U(1). Этот вопрос подробнее обсуждается несколько ниже; здесь же мы просто предположим, что U(1)-бозонов не существует, не задаваясь вопросом, можно ли доказать это в рамках КХД. Совершенно очевидно, что, если бы не было аномалии, это предположение было бы противоречивым. Поэтому, возможно, полезно проследить, к каким результатам приводит одновременное отсутствие голдстоуновских бозонов P0 и наличие аномалии в токе A0. В решении этого вопроса мы следуем прекрасному обзору [82].

Определенный формулой (37.1) ток A0 инвариантен по отношению к калибровочным преобразованиям, но в киральном пределе не инвариантен по отношению к преобразованиям группы U(1) вследствие аномалии, содержащейся в выражении (37.2). Как было показано для абелевых групп в работе [7], а для общего случая в работе [25], можно построить другой, инвариантный относительно преобразований группы U(1) ток:

Â

μ

0

=

A

μ

0

-2nK

μ

,

(37.6)

где введен чисто глюонный ток

K

μ

=

2g²

32π²

ε

μνρσ

B

ρ

B

+

1

3

ƒ

abc

B

B

.

(37.7)

В правильности этого выражения легко убедиться, заметив, что

μ

K

μ

=

32π²

G

̃

G

(37.8)

так что из формулы (37.2) в киральном пределе получаем

μ

Â

μ

0

=0.

(37.9)

Следует отметить, что ток K, удовлетворяющий уравнению (37.8), определен неоднозначно, так как он зависит от используемой калибровки. В принципе выражение (37.6) записано для "голых" величин, но всегда можно провести перенормировку таким образом, что оно останется справедливым и для "одетых" величин. Конечно, причина состоит в том, что аномалия не перенормируется.

Генератором преобразований U(1) должен быть сохраняющийся ток, а именно ток Â0 . Следовательно, можно определить киралъностъ χ соотношением

δ(x

0

-y

0

)

Â

0

0

(x),N

j

(y)

=

j

δ(x-y)N

j

(y),

(37.10а)

или в интегральном виде

Q

̂

0

,N

j

=-χ

j

N

j

,

(37.10б)

где U(1)-киральный заряд имеет вид

Q

̂

0

=

𝑑x

Â

0

0

(x).

(37.11)

Так как ток Â удовлетворяет уравнению (37.9), киральный заряд Q̂0 не зависит от времени, и, следовательно, можно ожидать, что не только соотношение (37.10) имеет смысл, но и числа χj не изменяются в процессе перенормировки. Чтобы доказать это более формально, рассмотрим вакуумное среднее

⟨vac|TÂ

μ

0

(x)

 

j

N

j

(x

j

)|vac⟩,

и применим к нему оператор дифференцирования ∂μ . Мы получим тождество Уорда

μ

⟨vac|TÂ

μ

0

(x)

 

j

N

j

(x

j

)|vac⟩,

=-

 

l

χ

l

δ(x-x

l

)

⟨vac|T

 

j

N

j

(x

j

)|vac⟩;

(37.12)

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука