Читаем Квантовая магия полностью

Попробуем рассуждать следующим образом. Рассмотрим пока в привычном представлении произвольную систему взаимодействующих частиц (например, твердое тело). Полную внутреннюю энергию тела, в соответствии с качественно различными типами взаимодействия, принято разделять на энергию межмолекулярных взаимодействий, энергию молекул, а также внутриатомную и ядерную энергию. Энергия самих молекул (атомов), в свою очередь, делится на электронную, колебательную и вращательную части, из них каждая следующая меньше по величине по сравнению предыдущей. Кроме того, различают несколько типов взаимодействия частиц, зависящих от их спинов: обменное взаимодействие, связанное с возможностью перестановки одинаковых частиц; спин-орбитальное взаимодействие, происходящее от релятивистского движущегося магнитного момента с электрическими полями; непосредственное магнитное взаимодействие моментов. Обменное взаимодействие обычно значительно превышает два остальных.

Каждому из указанных выше взаимодействий соответствует свое квантовое поле. Таким образом, произвольный объект можно рассматривать как многоуровневую систему квантовых полей. Очевидно, что все эти поля сложным образом взаимодействуют друг с другом. В результате такого взаимодействия образуется единое квантовое поле объекта. Помимо локальных составляющих, обусловленных близкодействующими сильными внутриядерными взаимодействиями, оно содержит в себе нелокальные дальнодействующие поля и является наиболее полной характеристикой объекта, определяя не только его внутреннюю структуру, но и взаимодействие с другими, в том числе удаленными, объектами. Иными словами, энергию любого объекта можно разделить на две составляющих. Одна из них определяет форму тела и задает поверхность, отделяющую его от окружения. А вторая, связанная с микроскопическим движением частиц и энергиями их взаимодействий, выходит далеко за границы этой локальной формы (в пределе на бесконечность).

Для изучения закономерностей, которым подчиняются поведение и свойства объектов, моделируемых таким образом, попытаемся воспользоваться методами статистической физики. Чтобы обосновать возможность их применения, рассмотрим основные принципы квантовой статистики.

Согласно подходу, принятому в статистической физике [153], в рассматриваемом объекте обычно выделяется достаточно малая, но еще макроскопическая подсистема. Она не является замкнутой и испытывает всевозможные воздействия со стороны остальных частей системы. Однако именно в силу сложности и запутанности внешних воздействий выделенная подсистема за достаточно большой промежуток времени многократно побывает во всех своих возможных состояниях. Поэтому, устремляя время на бесконечность, можно ввести величину p, которая характеризовала бы вероятность нахождения системы в определенном состоянии. Вводится она как предел отношения tк , при Т-> yen, где t— та часть полного времени Т, в течение которого подсистема находилась в данном состоянии.

С учетом «почти непрерывности» энергетического спектра макроскопических тел обычно вводится квантовый аналог классического элемента фазового объема — число квантовых состояний d замкнутой системы, приходящихся на определенный, бесконечно малый интервал значений ее энергии. Тогда вероятность состояний, лежащих в данном интервале энергии, записывают в виде d. Функция в аналогичном выражении классической статистики характеризует плотность распределения вероятности в фазовом пространстве и называется функцией статистического распределения (или просто функцией распределения) данного тела. В квантовой статистике ее заменяет матрица плотности в энергетическом представлении (статистическая матрица). Нахождение статистического распределения и является основной задачей статистики, поскольку знание матрицы плотности позволяет вычислять среднее значение любой величины, характеризующей систему, а также вероятности различных значений этих величин.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже