Данное определение статистического равновесия системы (наличия минимума энергии) устанавливает непосредственную связь между статистической физикой и квантовой теорией поля, поскольку дает возможность воспользоваться основополагающим принципом, лежащим в основе теории поля (в том числе и квантового). Это так называемый принцип наименьшего действия (
формализм) [154]. Он заключается в том, что произвольному объекту ставится в соответствие интегралДействие обычно записывают в виде интеграла по времени от функции Лагранжа
Таким образом, есть все основания применить отмеченный выше формализм к нашей модели, которая описывает макроскопические тела в виде совокупности квантовых полей.
Перейдем теперь к более детальному построению модели. Разобьем весь энергетический спектр рассматриваемой системы на интервалы в соответствии с различными видами энергий взаимодействия, указанными выше. Они могут и «накладываться» друг на друга, если это энергии одного порядка (например, в жидкостях энергия взаимодействия молекул и энергия их колебательного движения примерно равны). Выделенные интервалы представляют собой полевые объекты,
прежде всего средним значением плотности энергии, обычно они отделены друг от друга так называемыми энергетическими щелями. Полная внутренняя энергия системы в этом случае будет равна сумме энергий выделенных слоев, а также энергий их взаимодействия между собой. Таким образом, произвольный объект мы моделируем в виде совокупности совмещенных энергетических структур с качественно различными физическими характеристиками. Каждый из выделенных энергетических интервалов по-прежнему является «почти непрерывным», имеет равновесное состояние с минимумом энергии, и к каждому из них можно применить формализм, о котором говорилось выше. Теперь появляется возможность рассчитать значения физических величин и вывести уравнения движения не только для системы в целом, но и для каждой ее составляющей энергетической структуры в отдельности. Следовательно, мы можем описать не имеющие предметного воплощения объекты из менее плотных энергетических составляющих. Можно также описывать взаимодействие этих тонких квантовых структур и учитывать их влияние друг на друга.Во избежание недопонимания напомню, что мы исходим из непрерывного описания реальности, то есть исходным здесь является понятие поля, в котором нет никаких частиц. В этом случае различные энергии взаимодействия нельзя рассматривать только как результат взаимодействия частиц между собой и делать вывод, что без частиц эти энергетические структуры не существуют. Согласно квантовой теории поля, сами частицы появляются как один из возможных результатов взаимодействия непрерывных энергетических структур с измерительным прибором (в частности, с наблюдателем). При этом опровергается распространенное предубеждение, что различные энергии взаимодействия возникают лишь при объединении отдельных частиц в единую систему. Частицы как первичные и
элементы реальности не существуют — это вторичные структуры, которые «проявляются» из нелокального состояния в результате декогеренции окружением. Термин «энергия взаимодействия» здесь не совсем удачен, но я использую его, чтобы было понятно, о чем идет речь, и чтобы согласовать предложенный подход с общепринятым описанием предметного мира.