Читаем Квантовая магия полностью

Рассмотрим привычное определение вектора 4-импульса pдля частицы, например электрона, с массой mи вектором 4-скорости u, то есть p= . Кроме этого, в физике известен и другой подход к понятию импульса, при котором каждой частице приписывается волна де Бройля. Эта волна имеет самый непосредственный физический смысл, ее дифракция на кристаллической решетке позволяет определить не только длину волны, но и ту конфигурацию в пространстве, которую образуют поверхности равных целочисленных значений фазы. Конфигурация этих поверхностей дает простейшую иллюстрацию, которую удается найти для 1-формы. ' фаза, получим «1 -форму импульса» .

Посмотрим, что может дать такое представление импульса. Возьмем произвольный 4-вектор v. Он пересечет определенное число поверхностей целой фазы. Обозначим это число пересечений посредством выражения 'a , v~n. Как правило, и конец вектора vне лежат на поверхностях целочисленных фаз. Чтобы определить более точное значение числа пересечений (перейти от целого числа к ), необходимо в этих позициях между соседними поверхностями целой фазы распределить бесконечное число поверхностей со всеми промежуточными значениями фазы. Далее, чтобы понятие 1-формы стало рабочим инструментом, нужно сделать еще один небольшой шаг. Необходимо трактовать 1-форму не как глобальную конфигурацию поверхностей уровня, а как некоторую аппроксимацию этих поверхностей в элементарном, бесконечно малом объеме в виде плоских поверхностей, расположенных на равных расстояниях друг от друга (линейное приближение). Плоские поверхности 1-формы в этом малом объеме дадут наилучшую линейную аппроксимацию искривленных поверхностей уровня, а сама 1-форма становится линейной функцией, и появляется возможность оперировать ею, как и любой другой функцией. Нетрудно убедиться, что совокупность всех 1-форм в данном событии (4-точке) образует векторное пространство в абстрактном, алгебраическом смысле этого понятия. Существует и взаимно однозначное соответствие между произвольным вектором nи соответствующей ему 1-формой n в виде 'a n , v~n = n · v, то есть число пересеченных поверхностей произвольным вектором vу некоторой 1-формы n равно проекции вектора vна вектор n(точка обозначает скалярное произведение).

Таким образом, дифференциальная геометрия дает исследователю надежный математический формализм, позволяющий установить взаимнооднозначное соответствие между локальным точечным описанием физических величин (импульс в данной точке в виде вектора) и нелокальным описанием (тот же импульс, но уже в объеме, окружающем эту точку в виде 1-формы). А значит, учитывая наши цели, необходимо поближе познакомиться с этим геометрическим объектом (небольшое дополнение см. в Приложении).

Нам понадобится еще одно понятие дифференциальной геометрии. Это 1-форма объема. Достаточно будет ограничиться частным случаем этого понятия для трехмерного куба в системе отсчета, относительно которой он находится в покое. Тогда 1-форма объема с 4-скоростью uи ребром Lопределяется как = — V u= L 3 в случае стандартной положительной ориентации uв прошлое ( u= — ) или в другом варианте = L 2 . По своему геометрическому смыслу 1-форма объема представляет собой объем, «заметаемый» со временем либо за счет движения самого объема (первый вариант), либо за счет движения одной из его граней, например, площадки = L 2в направлении xсо скоростью u(второй вариант).

1-форма произвольного объема может быть путем разбиения ее на введенные элементарные объемы.


w, ) = w · p, T( , ) = 'a , p~n. (5.6)


Это определение позволяет легко получить компоненты тензора энергии импульса в чисто энергетическом представлении, поскольку проекция импульса pна 4-вектор скорости наблюдателя uдает энергию, измеренную наблюдателем, взятую с обратным знаком, то есть W= —u · p.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже