Читаем Квантовая магия полностью

«В терминах матрицы плотности классическая физика является предельным случаем квантовой механики, когда матрица плотности строго в одном и том же фиксированном базисе, и полностью положительное отображение становится тогда стохастическим отображением. Из этого следует, что квантовая эволюция системы имеет гораздо более сложный характер по сравнению с ее классическим поведением, и достаточно проанализировать характеристики квантовых систем, чтобы из этих результатов, как частный случай, получить классические характеристики систем, если ограничиться рассмотрением только диагональных элементов матрицы плотности».

В этом абзаце я дословно процитировал статью V. , Phys. Rev. .

Нужно хорошо понимать одну очень простую вещь: вся классическая физика со всеми ее законами для макроскопических тел и физических полей — частный случай квантовой теории. Это упрощение, пренебрежение в том числе. Но если мы ее отбрасываем в уравнениях классической физики, это не значит, что в объективной реальности она исчезает. Мы просто ею пренебрегаем в тех задачах, где она нас не интересует. Хотя до сих пор не прекращаются попытки найти классическое объяснение квантовой запутанности. Но любое классическое объяснение будет лишь упрощением, лишь частным случаем . Например, при «разнесении систем» мы можем пренебречь , но она, как объективный физический факт, никуда не исчезнет, поэтому и существует возможность использовать запутанность в технических устройствах.

Достоинство квантовой механики в том, что она способна рассматривать как сепарабельные состояния, так и несепарабельные. Сепарабельные являются ее частным случаем, когда матрица плотности в выбранном представлении. О несепарабельности допустимо говорить лишь при наличии взаимодействующих систем, при этом абсолютная отделимость имеет место только при полном отсутствии взаимодействий. По большому счету, чистых сепарабельных состояний вокруг нас нет — все когда-то образовалось из единого источника, однако методами квантовой теории можно описывать неотделимые состояния как отделимые, пренебрегая запутанностью, обнуляя недиагональные элементы в матрице плотности. Так и получается классическая физика…

Убрать магию из физики достаточно просто — нужно лишь закрыть на нее глаза и пренебречь , но нас интересует как раз .

Сложность описания зависит от того, какую задачу мы решаем и в каком представлении записываем вектор состояния (или матрицу плотности). Но в квантовой теории есть и более общий подход — непосредственно оперировать абстрактными векторами состояния, не переходя к какому-то конкретному представлению. Это полная теоретическая абстракция, идеал, но он легко реализуем, и из этого общего описания следует несепарабельность любой системы с окружающими его объектами при наличии взаимодействия, пусть даже в прошлом.

Для описания в терминах абстрактных векторов состояния никакого различия между макро- и микросистемой не существует. Это описание справедливо для любых систем, правда, из-за его общности и результаты мы можем получить только общие, не количественные, а качественные, но они неоспоримы, например, вывод о наличии той же несепарабельности.

Обычно в научных статьях примерно так и пишут.

Рассмотрим самую общую ситуацию. Предположим, Аи — две системы, и Аописана в гильбертовом пространстве H Аконечной размерностью d 1, система В— в гильбертовом пространстве H Вразмерностью d 2. Первоначально системы были изолированы, затем пришли во взаимодействие, и образовалась единая система в гильбертовом пространстве АВ, размерностью d 1x d 2и т. д.

Затем, исходя только из первооснов квантовой механики, которые и составляют фундамент ее математического формализма, делается вывод о несепарабельности и В. Еще раз подчеркну, что речь идет о любых системах — любой размерности, любой природы — и о любых взаимодействиях. Но следствия принципа несепарабельности носят качественный характер — о количественной оценке квантовой запутанности он сам по себе ничего не говорит. Это отдельная тема.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже