Читаем Квантовая магия полностью

Понятие «состояние» в квантовой механике непосредственно не связано с привычными классическими характеристиками системы (массой, скоростью и т. д.). Эти величины вторичны, и для нелокальных состояний они просто неприменимы. Энергия в этом отношении — более универсальная величина, ее можно использовать во всех случаях. Для физических объектов (если мы не рассматриваем, например, в терминах квантовой теории текстовое сообщение) состояние системы может быть описано в терминах одной ее характеристики — энергии. Обычно предполагается, что энергия должна быть определена в некотором заданном интервале. Все наблюдаемые физические величины, в том числе классические, можно получить из матрицы плотности. В случае замкнутой системы матрица плотности записывается через вектор состояния в виде проектора. Таким образом, матрица плотности в энергетическом представлении (и вектор состояния для замкнутой системы) отражает реальное, объективное состояние системы с определенным энергетическим спектром.

В целом, можно сказать, что квантовая теория изучает физические законы, которым подчиняются любые энергетические структуры (независимо от их размера и типа энергии). В настоящее время квантовая механика приступила к изучению физических процессов, в результате которых энергетические структуры возникают из нелокального состояния и уплотняются (декогеренция), а также обратных процессов — разуплотнения энергетических структур, перехода их в менее плотное состояние (возрастание квантовой запутанности), вплоть до полного «растворения» и потери своей внутренней структуры — чистого нелокального состояния. Особо подчеркну, что это не просто теоретизирование. То, что эти процессы действительно существуют в окружающем мире, подтверждается многочисленными физическими экспериментами, которые показывают адекватное соответствие теоретическим предсказаниям. Более того, эти процессы применяются на практике в технических устройствах, о чем уже неоднократно упоминалось.

Квантовая теория информации устанавливает связь между мерой квантовой запутанности и информацией. Это позволяет рассмотреть декогеренцию как процесс перехода Слова в его осязаемую форму. В терминах это относится и к физическому процессу, при котором наша мысль, команда, точнее, наше «намерение» становится «командой Орла» и реализуется в плотном мире. Кроме того, связь между энергией и квантовой информацией дает возможность сделать еще один вывод: все энергетические процессы связаны с процессами информационными, и на фундаментальном уровне Универсума, в нелокальном ( ) источнике Реальности все энергетические процессы в подсистемах сводятся информационным. На фундаментальном уровне нет ничего, кроме квантовой информации, которая в процессе декогеренции проявляется в пространствах меньшей размерности в виде локальных объектов и тварных энергий.

Поскольку термин «энергия» будет часто встречаться в последующих главах, я попытаюсь пояснить, что же подразумевается под этим понятием в контексте этой книги. Тем, кто желает более подробно узнать, как из самых простых соображений в квантовой теории вводится понятие «энергия», могу порекомендовать прочесть первые главы курса «Статистической термодинамики» Ч. . Этот курс интересен тем, что вся термодинамика здесь очень легко и достаточно строго выводится из простейшей модели из (не взаимодействующих!) элементарных магнитиков с двумя ориентациями магнитного момента (вверх/вниз).

Но для начала — несколько слов об основах квантового подхода к описанию макроскопическихпроцессов.

Как пишет в предисловии [70]: «Статистическая термодинамика представляется удивительно легким предметом, если при ее изучении придерживаться последовательной точки зрения, в основе которой лежит понятие состояний всей системы, независимо от того, велика она или мала».

И далее, в начале первой главы: «В настоящее время мы знаем, что статистическую термодинамику легче изучать с позиций квантовой механики, чем на основе классической механики времен Гиббса. Это обстоятельство неудивительно, поскольку квантовая механика дает правильное описание природы, тогда как на атомном уровне описание в рамках классической механики является неполным. Только переведя принципы Гиббса на язык квантовой механики, мы приходим к ясному, последовательному и простому физическому как термодинамики, так и статистической механики. В процессе такого перевода существенно использование только одного-единственного понятия квантовой механики, а именно — понятия о стационарном квантовом состоянии системы частиц».

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже