Как известно, статистическая физика исходит из следующего основного предположения (иногда это утверждение называют основной гипотезой статистической физики): замкнутая система с равной вероятностью может находиться в любом допустимом для нее состоянии. Состояние считается допустимым, если оно удовлетворяет наложенным на систему ограничениям. Основные ограничения — это ограничения по энергии и по числу подсистем (определяется размерностью гильбертова пространства).
Число допустимых состояний, в свою очередь, зависит от энергии. Поясню этот момент на примере системы из 10 двухуровневых подсистем (в двоичном базисе). Для состояния с максимальной энергией, то есть 1111111111, есть только одно допустимое состояние. Для состояния с чуть меньшей энергией, например, с одним нулем — уже 10 допустимых состояний, скажем, 1101111111, то есть 10 различных вариантов размещения 0. Это степень вырождения для данного значения энергии. Для состояния с двумя нулями число допустимых состояний (степень вырождения) равно 45 и т. д. Максимальное число допустимых состояний (252) имеет место для состояний из 5 единиц и 5 нулей, то есть состояний типа 1101011000. Здесь работает комбинаторика, и в целом мы имеем гауссово распределение для числа допустимых состояний.
Таким образом, энтропия (логарифм от числа допустимых состояний)
[71]является функцией энергии (числа единиц в нашем случае), то есть:(
где
Минимальная энтропия будет равна нулю (одно состояние) для состояний 1111111111 и 0000000000 (для состояний с максимальной и минимальной энергией), а максимальное значение энтропии в нашем примере равно 5,53 (
252).Такая схема позволяет ввести формальное понятие энергии для любой нефизической системы, состояния которой заданы в двоичном базисе, и оно будет согласовано с понятием энтропии.
Можно также достаточно просто показать, почему при взаимодействиях (при обмене энергией) возникают суперпозиционные состояния и квантовая запутанность.
Согласно статистической физике, при взаимодействии двух подсистем энергия перераспределяется таким образом, чтобы объединенная система имела максимальное число допустимых состояний (энтропия была максимальна). Объединенная система стремится к равновесию, к наиболее вероятностной конфигурации (к вершине «колокола» на гауссовой кривой).
Суммарная энергия
/
где
Например, пусть начинают взаимодействовать две подсистемы 00000 и 11111 с энергией
Можно даже предположить, что здесь справедлив и более общий вывод: при объединении двух систем (одинаковой размерности) с минимальной и максимальной энергией объединенная система стремится к максимально
В нашем примере «на бумаге» можно иногда обойтись без суперпозиции состояний, скажем, когда объединяются подсистемы четной размерности. Но условие равновесия должно работать во всех случаях, и без суперпозиции состояний здесь не обойтись — этот вариант работает всегда.