В простейшей
модели из элементарных магнитиков состояние системы определяется заданием ориентации (вверх или вниз) каждого из них. И энергия системы определяется достаточно просто, исходя из ее состояния. Энергия выражается через следующую разность, которая в данном случае называется спиновым избытком:(число спинов вверх) — (число спинов вниз) =
избыток.Например, состояние, в котором число спинов «вверх» равно числу спинов «вниз», имеет нулевую энергию (равномерное распределение энергии). Два состояния, в котором все спины направлены вверх (вниз), имеют максимальную энергию из всех возможных для данной системы.
Таким образом, энергия системы — это величина, которая характеризует отклонение системы от равновесного состояния. Отсюда — связь с классической физикой и всевозможными определениями энергии, которые в ней используются. Все они в основе своей содержат
определение энергии и с классической точки зрения характеризуют работу, которую может совершить система при ее переходе к равновесному состоянию. Здесь мы видим естественный переход к понятию силы (градиента энергии), который совершает эту работу.Отмечу, что вся классическая термодинамика выводится из простейшей
модели невзаимодействующих спинов, и остается возможность дальнейшего совершенствования этой модели. Очевидным становится то основное упрощение, следствием которого являются законы классической термодинамики. Поскольку не учитываются взаимодействия между частицами, из рассмотрения убираются несепарабельные состояния и нелокальные квантовые корреляции.Курс статистической термодинамики
хорош еще и тем, что он на конкретном примере показывает высокую эффективность подхода квантовой механики к объяснению физических процессов в окружающей реальности. Замечу — любых процессов, в том числе макроскопических, поскольку в основе точки зрения «лежит понятие состояний всей системы, независимо от того, велика она или мала».Задать энергию как функцию состояния можно и без привязки к физике, а, скажем, для характеристики информационных процессов. К примеру, выразить ее через аналог «спинового избытка» (удобнее брать удвоенную разность между числом нулей и единиц в векторе состояния в двоичном базисе). Можно еще проще — как число единиц в векторе состояния. В частности, состояние из всех нулей |000…00~n принять за минимальное значение энергии, тогда ортогональное ему состояние из всех единиц — состояние с максимальным значением энергии.
Такое определение энергии имеет и некоторый физический смысл: например, в случае передачи информации по каналу с шумом для «переворота» (искажения)
меньше энергии внешнего воздействия (шума), чем для «переворота» двух и более символов.После этого можно говорить о градиенте энергии.
), и они приходят во взаимодействие, то градиент энергии между ними будет максимальный (перепад энергии максимально возможный, так как одна подсистема находится в состоянии с минимальной энергией, а другая — с максимально возможной энергией).Возникает поток энергии, который приводит всю систему в равновесие, и она перейдет, например, в суперпозиционное состояниеНесколько слов об энтропии. Энтропия и энергия в физике неразрывно связаны друг с другом. При формальном определении энергии, скажем, как числа единиц в двоичном базисе можно эту связь установить для любых состояний (не только физических).
Как говорит
: «Это определение ошеломляет своей простотой: энтропия есть логарифм числа допустимых состояний системы. <…> Говорят, что энтропия служит мерой беспорядка в системе. Такое утверждение точно соответствует определению. Чем больше у системы допустимых состояний, тем больше энтропия».