Мысль о том, что наше восприятие и наши ощущения отражают далеко не то, что есть на самом деле, — вовсе не нова. Об этом давно говорят все религиозные и мистические учения. Степень достоверности восприятия и наша «
» предметным миром в различных учениях трактуются по-разному, вплоть до утверждения о полной иллюзорности материального мира. Но суть примерно одинакова — все учения свидетельствуют о том, что мир, который мы видим вокруг себя, вовсе не является физической основой реальности, помимо него есть нечто более емкое и , откуда лишь «генерируются» предметные тела нашего привычного мира в виде некой проекции.Кроме того, фильм «Матрица» имеет некий философский подтекст, затрагивает вопросы творения и бытия. Символическое значение несут даже имена персонажей, например, Тринити (
) — это Троица, один из основных христианских символов. Одна из серьезных тем, которые поднимаются в фильме, — тема освобождения от привычных иллюзий нашего восприятия. Но мы пока не будем касаться этого вопроса. Остановимся лишь на том, что Матрица в фильме рассматривается в качестве источника воспринимаемой реальности. В более широком смысле слова под «матрицей» сейчас обычно понимают некую фундаментальную структуру, в рамках которой проявляются те или иные свойства системы. Так вот, самое интересное, что этот основной тезис — «всё из Матрицы» — имеет в квантовой теории не переносный, а самый прямой смысл — «всё из матрицы плотности». Матрица плотности — это та самая фундаментальная структура, которая содержит в себе все возможные проявления системы. Матрица плотности любой системы, вплоть до Всеобъемлющей Матрицы Универсума, заключает в себе весь потенциал этой системы. В ней — всё, на что способна система, все «программы», которые могут быть в ней запущены и выполнены, всё, что она может продемонстрировать. Можно сказать кратко — матрица плотности содержит всю информацию о системе. И что для нас немаловажно — информацию о корреляциях системы с окружением. В общем, говоря о значимости матрицы плотности, я бы сопоставил ее с Матрицей из фильма, и тот, кому интересно, как она работает, может открыть для себя много нового, поближе познакомившись с этим понятием квантовой теории.Может возникнуть закономерный вопрос: что толку в наших теоретических рассуждениях, если мы рассматриваем большую систему типа Универсума? Ведь мы все равно не сможем записать для него матрицу плотности в явном виде, а значит, будем не в состоянии ничего толком о нем сказать. Это не совсем так, и здесь на первый план выходит количественное описание. Имея количественную теорию, можно многое сказать о любых системах независимо от их размера. Количественные законы справедливы всегда (в границах их применимости), как для небольших систем, так и для любых других, иначе они бы не были законами. Поэтому и существует возможность устанавливать общие закономерности на самых примитивных теоретических моделях, что обычно и делается. Многие физические теории построены именно таким образом — на основе теоретического анализа простейших систем. В нашем случае, когда речь идет о фундаментальных физических процессах, связанных с
и квантовыми корреляциями, основные закономерности тоже устанавливаются посредством анализа небольших систем. Этим сейчас и занимаются физики-теоретики, используя матрицу плотности в качестве основного теоретического инструмента. Причем эти результаты проходят проверку в экспериментальных исследованиях и практическом применении квантовой запутанности.А теперь давайте поговорим о матрице плотности более подробно. Для начала напомню одно из основных положений квантовой теории (см. главу 2, раздел 2.5): открытая система, взаимодействующая со своим окружением, не может быть описана вектором состояния, такой системе (это смешанное состояние) можно сопоставить лишь матрицу плотности.
Понимание этого фундаментального обстоятельства пришло не сразу. Несмотря на
что понятие о матрице плотности было сформулировано фон Нейманом [75]в 1927 году, осознать исключительно важную ее роль в квантовой теории удалось значительно позднее.Так, когда в 1935 году Эйнштейн сформулировал свой знаменитый
, он еще не понимал, что волновую функцию не всегда можно сопоставить с отдельными частями системы. В работе «Физика и реальность» [76]он пишет: