Читаем Квантовая магия полностью

Когда мы говорим о матрице плотности, сразу возникает вопрос: о какой плотности идет речь? Здесь имеется в виду плотность распределения вероятности различных состояний рассматриваемой системы. Данный термин идет еще от классической механики и статистической физики, когда классическое состояние задается точкой в фазовом пространстве. При этом предполагается, что конкретное состояние неизвестно, а известна лишь вероятность того, что система находится в том или ином состоянии из некоторого множества . Система тогда рассматривается подобно жидкости в фазовом пространстве. В этом случае ее масса в произвольном объеме фазового пространства считается равной полной вероятности того, что система пребывает в каком-либо из состояний, соответствующих точкам данного объема. Затем вводится плотность этой жидкости в данной точке, равная вероятности (на единицу объема фазового пространства) того, что система будет близка к данному состоянию. Отсюда и пошло это название.

Матрица плотности содержит вероятностисостояний. Если речь идет о физике, то из вектора состояния (матрицы плотности) можно получить все физические величины (динамические переменные), которые используются при классическом описании системы (энергию, координаты, импульсы, моменты импульсов и т. д.). Причем величины не только скалярные, но и векторные, а также функции от этих величин. В квантовой механике динамическим переменным системы (физическим величинам) ставятся в соответствие линейные самосопряженные операторы. Это один из основных постулатов квантовой теории — соответствие « величина».

Вектор состояния и матрица плотности могут применяться для квантового описания (в терминах состояний) и в случае, когда мы имеем дело не с физикой, а, скажем, с текстовыми сообщениями (и любой другой информацией). Этот подход широко применяется сейчас в квантовой теории информации.

Часто используется стандартный базис — из чисел в двоичной системе: 0…00, 0…01, 0…10, 0…11 и т. д. Так делается в компьютерах, где любая информация записывается в двоичном базисе.

Этот базис применяется и в физике: например, в случае спиновых степеней свободы каждая позиция соответствует двум возможным состояниям одного спина во внешнем магнитном поле (0-спин-вверх, 1-спин-вниз).

Сумма диагональных элементов, то есть следматрицы плотности равен единице. Так, в квантовой теории информации, когда пересылается какое-либо сообщение, возможны искажения, и получателю может прийти не то, что было послано: к примеру, вместо одной буквы — другая. Набор основных состояний системы (диагональные элементы матрицы плотности) характеризует все возможные варианты таких искажений (их вероятности), а «приемник» прочитает только один из них. То есть будет реализован один из искаженных вариантов с соответствующей вероятностью, а сумма вероятностей (след матрицы плотности) должен быть равен единице.

Еще одно важное свойство матрицы плотности — это ее . Попросту говоря, любая матрица плотности должна быть симметричной (в вещественном случае), ее недиагональные элементы расположены парами симметрично относительно главной диагонали. В комплексном случае эти пары будут комплексно сопряженными — это и есть матрица. Такая симметричная структура матрицы плотности является следствием того, что корреляции в системе всегда выступают парами: если одна подсистема взаимодействует с другой, то и вторая с первой — это одно и то же взаимодействие. Только, когда речь идет о матрице плотности, более правильно говорить о наборе различных основных состояний системы (диагональные элементы) и о корреляциях между ними (недиагональные элементы). По диагонали матрицы плотности стоят вероятности «проявления» дискретных состояний при декогеренции (в случае исходного нелокального состояния). Например, у кубита два локальных состояния 0 и 1, их вероятности — это | a| 2и | b| 2, то есть существует бесконечное число различных вариантов весовых соотношений при наложении (суперпозиции) этих двух состояний. А недиагональные элементы характеризуют корреляции между данными основными состояниями, в случае кубита — это *и *, звездочка здесь — знак комплексного сопряжения. Пространство состояний для матрицы плотности — не только набор всех дискретных (базисных) состояний, это и все возможные корреляции между ними. Полный набор возможных локальных состояний — лишь диагональные элементы матрицы плотности. Из-за того, что учитываются все возможные связи между состояниями, число элементов в матрице плотности увеличивается экспоненциально с числом кубитов Nи равно 2 Nx 2 N.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже