Когда мы говорим о матрице плотности, сразу возникает вопрос: о какой плотности идет речь? Здесь имеется в виду плотность распределения вероятности различных состояний рассматриваемой системы. Данный термин идет еще от классической механики и статистической физики, когда классическое состояние задается точкой в фазовом пространстве. При этом предполагается, что конкретное состояние неизвестно, а известна лишь вероятность того, что система находится в том или ином состоянии из некоторого множества
. Система тогда рассматривается подобно жидкости в фазовом пространстве. В этом случае ее масса в произвольном объеме фазового пространства считается равной полной вероятности того, что система пребывает в каком-либо из состояний, соответствующих точкам данного объема. Затем вводится плотность этой жидкости в данной точке, равная вероятности (на единицу объема фазового пространства) того, что система будет близка к данному состоянию. Отсюда и пошло это название.Матрица плотности содержит
Вектор состояния и матрица плотности могут применяться для квантового описания (в терминах состояний) и в
случае, когда мы имеем дело не с физикой, а, скажем, с текстовыми сообщениями (и любой другой информацией). Этот подход широко применяется сейчас в квантовой теории информации.Часто используется стандартный базис — из чисел в двоичной системе: 0…00, 0…01, 0…10, 0…11 и т. д. Так делается в компьютерах, где любая информация записывается в двоичном базисе.
Этот базис применяется и в физике: например, в случае спиновых степеней свободы каждая позиция соответствует двум возможным состояниям одного спина во внешнем магнитном поле (0-спин-вверх, 1-спин-вниз).
Сумма диагональных элементов, то есть
Еще одно важное свойство матрицы плотности — это ее
. Попросту говоря, любая матрица плотности должна быть симметричной (в вещественном случае), ее недиагональные элементы расположены парами симметрично относительно главной диагонали. В комплексном случае эти пары будут комплексно сопряженными — это и есть матрица. Такая симметричная структура матрицы плотности является следствием того, что корреляции в системе всегда выступают парами: если одна подсистема взаимодействует с другой, то и вторая с первой — это одно и то же взаимодействие. Только, когда речь идет о матрице плотности, более правильно говорить о наборе различных основных состояний системы (диагональные элементы) и о корреляциях между ними (недиагональные элементы). По диагонали матрицы плотности стоят вероятности «проявления» дискретных состояний при декогеренции (в случае исходного нелокального состояния). Например, у кубита два локальных состояния 0 и 1, их вероятности — это |