Рассмотрим теперь рассеяние нейтронов на кристалле. Когда на атомах кристалла рассеиваются нейтроны с длиной волны, несколько меньшей, чем расстояние между атомами, мы получаем ярко выраженные интерференционные эффекты. Подобно рентгеновским лучам, нейтроны вылетают из кристалла только в некоторых дискретных направлениях, определяемых брэгговским законом отражения. В этом примере интерферирующими альтернативами будут взаимоисключающие возможности рассеяния отдельного нейтрона на том или ином атоме (амплитуда рассеяния нейтрона на каком-либо атоме настолько мала, что нет надобности рассматривать альтернативы, соответствующие рассеянию более чем на одном атоме). Волны амплитуды (описывающей движение нейтрона), которые распространяются от этих атомов, усиливают друг друга лишь в некоторых определённых направлениях.
Существует одно интересное обстоятельство, которое усложняет эту явно простую картину. Подобно электронам нейтроны имеют спин, и у них можно выделить два состояния: состояние со спином «вверх» и состояние со спином «вниз». Предположим, что атомы рассеивающего вещества обладают аналогичным спиновым свойством, как, например, углерод С13. В этом случае эксперимент покажет два явно различных типа рассеяния. Оказывается, что, кроме рассеяния в дискретных направлениях, которое описано выше, имеется и диффузное рассеяние по всем направлениям. Почему оно возникает?
Ключ к пониманию этих двух типов рассеяния мы получим, заметив следующее. Предположим, что спины всех нейтронов, участвующих в эксперименте, до рассеяния направлены вверх. Если анализировать направления спинов вылетающих нейтронов, то обнаружится, что некоторые будут направлены вверх, а некоторые — вниз; нейтроны, спин которых по-прежнему направлен вверх, рассеиваются только под дискретными углами Брэгга, в то время как нейтроны, спин которых перевернулся, рассеиваются диффузно по всем направлениям.
Если нейтрон изменил направление спина, то закон сохранения углового момента потребует, чтобы ядро, на котором произошло рассеяние, также изменило направление своего спина на обратное. Следовательно, в принципе можно было бы выявить то ядро, на котором рассеялся данный нейтрон. Мы могли бы для этого запомнить перед экспериментом спиновое состояние всех рассеивающих ядер в кристалле. Затем после того, как рассеяние произошло, мы могли бы исследовать кристалл вновь и посмотреть, у каких ядер спин переменился на обратный. Если ни у одного ядра в кристалле спин не претерпел такого изменения, то ни у одного нейтрона направление спина также не изменилось, и мы не может сказать, на каком ядре в действительности произошло рассеяние нейтрона. В этом случае альтернативы интерферируют, и в результате мы имеем брэгговский закон рассеяния.
Если же при этом обнаружится, что у какого-то ядра направление спина изменилось, то мы знаем, что на этом именно ядре и произошло рассеяние; интерференции альтернатив нет. Движение рассеянного нейтрона описывается сферическими волнами, которые расходятся от рассеивающего ядра, и в описание входят только эти волны. В таком случае вылет нейтрона равновероятен в любом направлении.
Исследовать все атомные ядра в кристалле, чтобы найти одно, у которого изменилось спиновое состояние,— это подобно поискам иголки в стоге сена; но природу не интересуют практические трудности экспериментатора. Существенно то, что в принципе возможно, не возмущая движение рассеянного нейтрона, определить, на каком именно ядре произошло рассеяние. Наличие такой возможности означает, что даже если мы и не выявляем это ядро, тем не менее имеем дело с несовместимыми (и, следовательно, не интерферирующими) альтернативами.
С другой стороны, возникновение интерференции между альтернативами, если спиновые состояния нейтронов не изменились, означает, что даже в принципе невозможно когда-либо обнаружить, на каком отдельном ядре кристалла произошло рассеяние — невозможно, во всяком случае, без вмешательства в опыт в момент рассеяния или до него.
§ 4. Краткий обзор понятий, связанных с вероятностью
Альтернативы и принцип неопределённости. В предыдущем изложении мы хотели
разъяснить смысл амплитуды вероятности, её значение в квантовой
механике и рассмотреть правила обращения с вероятностями. При
этом выяснилось, что существует некоторая величина, называемая
=
1
+
2
.
(1.14)