Читаем Квантовая механика и интегралы по траекториям полностью

Квадрат модуля полной амплитуды мы интерпретируем как вероятность того, что соответствующее событие произойдёт. Например, вероятность попадания электрона в детектор

P=|

1

+

2

|^2.

(1.15)

Если мы прерываем развитие процесса ещё до его завершения, наблюдая состояние частиц в ходе события, то тем самым изменяем вид выражения для полной амплитуды. Так, если установлено, что система находится в некотором определённом состоянии, то тем самым мы исключаем возможность того, чтобы она оказалась в каком-либо другом состоянии, и при вычислении полной вероятности амплитуды, связанные с такими исключёнными состояниями, уже нельзя рассматривать в качестве альтернатив. Например, если с помощью какого-нибудь устройства определить, что электрон проходит именно через отверстие 1, то амплитуда его попадания в детектор будет точно равна 1. Совершенно неважно, будем ли мы (в тот момент, когда работает измеряющее устройство) фактически наблюдать и записывать результат наблюдения или же нет. Очевидно, что при желании его можно было бы узнать в любое время. Уже одного вмешательства измеряющего устройства достаточно, чтобы изменить систему и соответствующую амплитуду полной вероятности.

Это последнее обстоятельство и составляет основу принципа неопределённости Гейзенберга, который утверждает, что существует естественный предел точности любого эксперимента и любого усовершенствования измерений.

Структура амплитуды вероятности. Амплитуда вероятности всякого события представляет собой сумму амплитуд различных альтернативных возможностей осуществления этого события. Это позволяет изучать её многими различными способами в зависимости от того, на какие классы можно подразделить альтернативы. Наиболее детальная картина получается при условии, что частица при переходе из состояния A в состояние B за данный промежуток времени совершает вполне определённое движение (т.е. определённым образом изменяет свои координаты в зависимости от времени), описывая конкретную траекторию в пространстве и времени. С каждым таким возможным движением мы будем связывать одну амплитуду; полная же амплитуда вероятности будет суммой вкладов от всех траекторий.

Эту мысль можно пояснить, продолжив рассмотрение нашего эксперимента с двумя отверстиями. Пусть между источником и отверстием помещена пара дополнительных экранов D и E (фиг. 19). В каждом из них проделаем по нескольку отверстий, которые обозначим D1, D2, … и E1, E2, … . Для простоты будем предполагать, что движение электронов происходит в плоскости (x, y). В таком случае имеется несколько альтернативных траекторий, которые может выбрать электрон при своём движении от источника к отверстию в экране B. Он мог бы направиться сначала к отверстию D2, далее к E3 и затем к отверстию 1 или же мог бы, выйдя из источника, пролететь через D3, затем через E3 и, наконец, через отверстие 1 и т.д. Каждой из этих траекторий соответствует своя собственная амплитуда, и полная амплитуда вероятности будет их суммой.

Фиг. 1.9. Опыт с несколькими отверстиями в экранах.

Когда в экранах D и E, помещённых между источником на экране A и конечной точкой на экране C, проделано несколько отверстий, для каждого электрона имеется несколько альтернативных траекторий. Каждой из этих траекторий соответствует своя амплитуда вероятности. Чтобы определить результат какого-либо эксперимента, в котором открыты все отверстия, необходимо просуммировать все эти амплитуды по одной для каждой возможной траектории.

Предположим теперь, что мы увеличиваем число отверстий в экранах D и E до тех пор, пока от экранов ничего не останется. Траектория электрона должна определяться в этом случае высотой xD, на которой электрон пересекает несуществующий экран D, расположенный от источника на расстоянии yD, а также высотой xE и расстоянием yE, как это показано на фиг. 1.10. Каждой паре значений xD и xE здесь соответствует своя амплитуда. Принцип суперпозиции по-прежнему остаётся в силе, и мы должны взять сумму (теперь уже интеграл) этих амплитуд по всем возможным значениям xD и xE.

Фиг. 1.10. Число отверстий стремится к бесконечности.

В экранах, расположенных на расстояниях yD и yE от экрана A, проделывается все большее и большее число отверстий. В конце концов экраны полностью заполняются отверстиями, и получается непрерывная область точек вверх и вниз от центров экранов, в которых электрон может пересекать линию экрана. В этом случае сумма альтернатив превращается в двойной интеграл по непрерывным параметрам xD и xE — альтернативным высотам, на которых электрон пересекает экраны.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное