Слово «квант», означающее некоторое определенное количество чего бы то ни было, может создать впечатление, что квантовая механика описывает мир дискретным и мозаичным, как экран телевизора или компьютерный монитор, если посмотреть на него вплотную. На самом деле все наоборот: квантовая механика описывает мир как гладкую волновую функцию. Однако в подходящих условиях, когда отдельные части волновой функции имеют четкую «привязку», волна выглядит как комбинация отдельных колебательных мод. Когда мы наблюдаем такую систему, то видим те самые дискретные возможности. Это верно и для орбит электронов, и это же объясняет, почему квантовые поля выглядят как наборы отдельных частиц. В квантовой механике мир принципиально волнообразен; его явная квантовая дискретность обусловлена тем, как именно способны вибрировать эти волны.
Идеи де Бройля были интригующими, однако совершенно не тянули на полноценную теорию. Сформулировал такую теорию Эрвин Шрёдингер, в 1926 году выдвинувший динамическую трактовку волновых функций: в частности, он сформулировал описывающее их уравнение, позже названное в его честь. Революции в физике, в том числе и в квантовой механике, как правило, дело молодых, но Шрёдингер явно стал исключением. Тон дискуссиям на Сольвеевском конгрессе 1927 года задавали Эйнштейн (сорок два года) и Бор (сорок четыре) – они казались величественными старцами. Гейзенбергу, как и Дираку, было двадцать пять, Паули – двадцать семь. На Шрёдингера в его зрелом возрасте тридцати восьми лет смотрели как на человека не первой молодости, который едва ли способен выдвинуть радикальную идею, подобную этой.
Обратите внимание на переход от де бройлевских «материальных волн» к шрёдингеровской «волновой функции». Хотя работы де Бройля сильно повлияли на Шрёдингера, его концепция оказалась гораздо более проработанной и заслуживает отдельного упоминания. Очевидно, что величина волны материи в любой точке выражалась некоторым вещественным числом, в то время как амплитуды, описываемые волновыми функциями, являются комплексными числами – суммой действительного и мнимого чисел.
Что еще более важно, первоначальная идея состояла в том, что каждый вид частиц будет ассоциирован с некоторой материальной волной. Но шрёдингеровская волновая функция устроена иначе: в его трактовке существует всего одна функция, описывающая все частицы во Вселенной. Столь простой переход привел науку к революционному понятию о квантовой запутанности.
Идеям Шрёдингера сильно добавило очков уравнение, описывающее изменение волновых функций с течением времени. Хорошее уравнение – все, что нужно физику. Из красивой идеи («у частиц есть волновые свойства») оно делает строгий, бескомпромиссный инструмент. Для человека «бескомпромиссный» – не самое лучшее качество, но для научной теории – то, что нужно. Это характеристика, обеспечивающая точные прогнозы. Когда мы говорим, что в учебниках по квантовой механике много времени уделяется решению уравнений, мы в основном имеем в виду уравнение Шрёдингера.
Именно уравнение Шрёдингера решала бы квантовая версия демона Лапласа, предсказывая будущее Вселенной. И хотя исходная форма уравнения предназначалась для работы с системами, состоящими из единичных частиц, на практике оно отражает гораздо более общую идею, в равной степени применимую к спинам, полям, суперструнам или любой другой системе, которую вы можете описать с помощью квантовой механики.
В отличие от матричной механики, пользующейся языком математических концепций, с которыми не имели дел большинство физиков того времени, уравнение Шрёдингера не слишком отличалось от уравнений Максвелла, описывавших электромагнетизм и по сей день красующихся на поношенных футболках студентов физфака. Волновую функцию можно визуализировать – как минимум убедить себя в том, что вам это удалось. Физическое сообщество не вполне понимало, что делать с Гейзенбергом, но к приходу Шрёдингера физики были готовы. Копенгагенская компания – в особенности юнцы Гейзенберг и Паули – не слишком тепло восприняла конкурирующие идеи, выдвинутые непримечательным стариканом из Цюриха. Но прошло совсем немного времени, и они стали мыслить в категориях волновых функций, как и все прочие.
В уравнении Шрёдингера присутствуют незнакомые символы, но понять его основной посыл несложно. Де Бройль предположил, что импульс волны увеличивается по мере того, как уменьшается ее длина. Шрёдингер предложил схожую вещь, но для энергии и времени: скорость изменения волновой функции пропорциональна имеющемуся у нее количеству энергии. Вот его знаменитое уравнение в самой общей форме:
Не будем углубляться в детали, но интересно посмотреть, как физики обращаются с подобными уравнениями. Здесь не обошлось без математики, однако в конечном итоге это всего лишь символьное выражение той идеи, которую мы уже изложили словами.