Тогда, в 1920-х, все это было далеко не столь очевидно. Тогда было естественно полагать, что вероятностная природа квантовой механики просто указывает на неполноту теории и что более детерминистическую, напоминающую классическую картину еще только предстоит разработать. Иными словами, считалось, что волновая функция характеризует степень нашего неведения о происходящем, а не является, как мы здесь утверждаем, его истинным отражением. Узнав о принципе неопределенности, многие первым делом пытаются найти в нем лазейки. Все эти попытки провалились, но при этом мы узнали много нового о том, в чем квантовая реальность принципиально отличается от привычного нам классического мира.
Отсутствие конкретных значений физических величин в самом сердце реальности, таких, которые более или менее прямо соотносятся с тем, что мы можем наблюдать, – одна из глубинных особенностей квантовой механики, которую непросто принять при первом знакомстве. Есть физические величины, которые не просто неизвестны, но даже не существуют, хотя нам кажется, что мы можем их измерить.
Квантовая механика вплотную подводит нас к зияющей пропасти между тем, что мы видим, и тем, что есть на самом деле. В этой главе мы рассмотрим, как этот разрыв проявляется в принципе неопределенности, а в следующей еще более ярко увидим его в феномене квантовой запутанности.
Принцип неопределенности обязан своему существованию тому факту, что отношение между координатой и импульсом (который равен произведению массы на скорость) в квантовой механике фундаментально отличается от такого же отношения в классической.
В классической механике можно представить, что мы измерим импульс частицы, отследив ее координату во времени и пронаблюдав, как быстро она движется. Но если мы имеем доступ только к одной из характеристик, то координата и импульс в данный момент времени полностью независимы друг от друга. Если я скажу вам, что в конкретный момент времени частица имеет определенную координату и более ничего, вы не будете знать, какова ее скорость, и наоборот.
Числа, которые необходимы для описания системы, физики называют степенями свободы данной системы. В ньютоновской механике, чтобы сообщить мне полную информацию о состоянии набора частиц, вы должны указать мне координату и импульс каждой из них; в данном случае степени свободы – это координаты и импульсы. Ускорение не является степенью свободы, поскольку оно может быть вычислено, когда известны все силы, воздействующие на систему. Суть степени свободы в том, что сама она не зависит ни от чего другого.
Когда мы переходим к квантовой механике и размышляем о шрёдингеровских волновых функциях, ситуация несколько меняется. Чтобы получить волновую функцию для единственной частицы, необходимо учесть все точки, в которых потенциально может находиться эта частица, когда мы ее наблюдаем. Затем каждому из этих местоположений присвоим амплитуду, комплексное число с таким свойством: квадрат каждого такого числа равен вероятности обнаружить частицу в данной точке. Существует ограничение: сумма квадратов всех этих чисел в точности равна единице, поскольку общая вероятность найти частицу в любом конкретном месте равна единице. (Иногда вероятности выражаются в процентах, каждый процент составляет одну сотую от общей вероятности; вероятность 20 % эквивалентна вероятности 0,2.)
Обратите внимание: здесь мы не упоминаем ни скорость, ни импульс. Дело в том, что в квантовой механике нам не приходится отдельно указывать импульс, как это делалось в классической механике. Вероятность получить при измерении определенную скорость полностью определяется волновой функцией, заданной для всех возможных координат. Скорость не является отдельной степенью свободы, не зависимой от координаты. Основная причина кроется в том, что волновая функция – это, как известно, волна. В отличие от классической частицы, здесь у нас нет единственной координаты и единственного импульса, а есть функция всех возможных координат, и эта функция обычно колеблется вверх-вниз. От темпа этих колебаний зависит, что мы увидим, если попробуем измерить скорость или импульс.
Рассмотрим простую волну-синусоиду, колеблющуюся вверх и вниз регулярным образом и распространяющуюся в пространстве. Подставим такую волновую функцию в уравнение Шрёдингера и зададимся вопросом, как она будет изменяться со временем. Мы увидим, что у синусоиды есть четко определенный импульс и что чем меньше длина волны – тем выше ее скорость. Но синусоидальная волна не имеет определенного положения; напротив, она находится повсюду. Более типичная форма волны представляет собой некую смесь волнового пакета, локализованного в одной точке, и идеальной синусоиды с четкой длиной волны, распределенной по всему пространству, и не будет соответствовать конкретной координате или конкретному импульсу, а будет представлять некую смесь обеих величин.