Но подождите. Ведь нам хорошо известна теория, где измерения не дают определенных результатов, – это строгая эвереттовская квантовая механика. В рамках этой теории попросту неверно, что, измерив спин электрона, мы получим в результате либо верхний, либо нижний спин; в одной ветви волновой функции у нас может получиться верхний спин, а в другой – нижний. Это не означает, что в многомировой интерпретации теорема Белла не соблюдается: математические теоремы безусловно верны, если учитывать их допущения. Просто речь о том, что в данном случае эта теорема неприменима. Результат Белла не подразумевает, что мы должны включать в эвереттовскую квантовую механику жуткое дальнодействие, как это делается в старых и скучных теориях единого мира. Корреляции возникают не потому, что некоторое воздействие передается быстрее скорости света, а из-за ветвления волновой функции на разные миры, в которых происходят коррелирующие явления.
Если вы исследователь основ квантовой механики, то важность теоремы Белла для вашей работы зависит от того, что именно вы пытаетесь сделать. Если вы посвятили себя задаче изобрести новую версию квантовой механики с нуля, в которой измерения действительно имеют определенные результаты, то неравенство Белла – самый важный ориентир, о котором вам стоит помнить. С другой стороны, если вас устраивает многомировая интерпретация и вы пытаетесь разгадать, как эта теория проецируется на наблюдаемые нами феномены, то результат неравенства Белла непосредственно проистекает из базовых уравнений, а не является еще одним ограничением, о котором вам стоит беспокоиться.
Одна из самых потрясающих сторон теоремы Белла заключается в том, что она превращает предполагаемую «жуткость» квантовой запутанности в прямой экспериментальный вопрос – проявляет ли природа однозначно нелокальные корреляции между сильно удаленными частицами или нет? Думаю, вы будете рады услышать, что соответствующие эксперименты уже проводились и прогнозы квантовой механики блестяще подтверждались в каждом из них. В популярных СМИ любят захватывающие дух заголовки вроде: «Квантовая реальность оказалась причудливее, чем считалось ранее!». Но если вы внимательно прочтете подобную статью, то окажется, что был проведен еще один эксперимент, в точности подтвердивший прогнозы квантовой механики, опирающейся на теорию, которая была сформулирована еще в 1927-м или, самое позднее, в 1935 году. Сейчас мы понимаем квантовую механику несравнимо лучше, чем тогда, но сама теория не изменилась.
В данном случае я не хочу сказать, что эксперименты не важны или не впечатляют, – и важны, и впечатляют. Проблема при проверке прогнозов Белла заключается, например, в следующем: мы пытаемся убедиться, что дополнительные корреляции, прогнозируемые квантовой механикой, не могут объясняться какими-то хитрыми классическими корреляциями, известными ранее. Откуда нам знать, не повлияло ли какое-то скрытое событие из прошлого на то, как мы решим измерить наш спин, или на то, каков будет результат измерения, или и на то и на другое сразу?
Физики проделали большой путь, чтобы исключить такие возможности, и выполнение «тестов Белла без всяких лазеек» превратилось в целое ремесло. Так, недавно был получен результат, призванный исключить возможность какого-либо неизвестного процесса в лаборатории влиять на способ измерения спина. Поэтому выбор эксперимента не доверили ни лаборанту, ни человеку за соседним столом, который мог бы воспользоваться генератором случайных чисел: его выбирали в зависимости от поляризации фотонов, излученных звездами, находящимися на расстоянии многих световых лет от нас. Если и имел место какой-то гнусный заговор с целью выставить мир полностью квантовомеханическим, то он должен был состояться сотни лет назад, когда эти фотоны только начинали свой путь. Такое возможно, но маловероятно.
Похоже, что квантовая механика вновь оказалась права. До сих пор квантовая механика всегда оказывалась права.
Часть II
Расщепление
6
Расщепление Вселенной
Вышедшая в 1935 году статья о квантовой запутанности под авторством Эйнштейна, Подольского и Розена (ЭПР) и реакция на нее Нильса Бора были последними громкими отзвуками в серии дебатов Бора и Эйнштейна об основах квантовой механики. Эти двое начали переписываться по поводу квантовой механики вскоре после того, как в 1913 году Бор предложил свою концепцию квантованных орбит электронов, а кульминации их спор достиг в 1927 году на Сольвеевском конгрессе. Согласно популярной версии событий, у Эйнштейна были некоторые возражения относительно быстро набирающего силу Копенгагенского консенсуса, и он изложил их Бору на семинаре. Весь вечер Бор провел за обдумыванием этих возражений, а потом за завтраком триумфально парировал их перед пристыженным Эйнштейном. Нам говорят, что Эйнштейн просто не cмог примириться с принципом неопределенности, и вспоминают его афоризм о том, что Бог не играет в кости.