В 1687 г. выходят в свет «Начала» Ньютона — «Математические начала натуральной философии», открывшие новую эру в физике. Теперь уже в отношении «будущих веков» можно было не сомневаться. Интервалы между важными открытиями стали измеряться уже не целой человеческой жизнью, а несколькими годами. Но к развитию новой цивилизации — промышленной — вплоть до XVIII в. наука имела лишь косвенное отношение. И лишь в XIX в. она перешла от пассивной роли к активной и «усовершенствование пушек» перестало быть только «делом рук литейщиков». Прогресс в науке и промышленности теперь уже в тесном переплетении шел наперегонки со временем.
К концу XIX в. наступило время уверенности и чувства полной власти над природой. Уже были изобретены телефонный аппарат и фонограф, уже работали паровая турбина и двигатель внутреннего сгорания, скоро должно было родиться радио. Стройные законы, покоящиеся на классической механике Галилея и Ньютона, на электродинамике Максвелла, казались созданными навечно. Воздух был пропитан идеями чудесных изобретений.
«На горизонте классической физики были два темных облака, омрачавших ее чистое небо: опыт Майкельсона и проблема распределения энергии в спектре черного излучения» [4, с. 143].
В 1879 г. американские газеты сообщили о том, что на научном горизонте Америки появилась новая яркая звезда. Младший лейтенант морской службы Альберт Майкельсон, которому нет еще 27 лет, добился выдающегося успеха в области оптики: он измерил скорость света [5, с. 11]. Майкельсон не только провел измерения с большой точностью, но неопровержимо доказал, что скорость света не зависит от движения Земли. Это утверждение прямо противоречило законам классической механики Ньютона, согласно которой скорость луча света, идущего в одном с Землей направлении, должна быть больше скорости луча, идущего в обратном направлении. Но ни ошеломляющий результат опыта Майкельсона, ни спектр излучения нагретого тела, который не поддавался объяснению на основе существующих теорий, не беспокоили особенно старых физиков. Нельзя было не признать возникшие противоречия, нельзя было не видеть эти «два облачка», но уверенным в своих твердых знаниях физикам казалось, что так или иначе все когда-нибудь и как-нибудь сойдется. Казалось, эти маленькие противоречия не могут помешать близкому и полному завершению картины о силах, действующих в природе, единой картины, до которой осталось всего несколько шагов. И ученые, все еще оставаясь учеными-одиночками, в своих маленьких лабораториях и «задних комнатах» неторопливо и с наслаждением занимались своим ремеслом.
Хаос возник внезапно.
В ноябре 1895 г. Вильгельм Конрад Рентген, «в то время незаметный профессор физики в Вюрцбурге, купил одну из новых катодно-лучевых трубок с целью выяснения ее внутреннего механизма. Уже через неделю он натолкнулся на загадочное явление, имевшее место
Не прошло и трех месяцев после открытия Рентгена, как профессор Политехнической школы в Париже Антуан Анри Беккерель, наследник прекрасной коллекции фосфоресцирующих веществ, собранной его дедом и отцом, решил проверить, не обладают ли холодные лучи обычных флюоресцирующих минералов и солей свойствами, подобными свойствам лучей Рентгена. Исследование фосфоресценции и люминесценции было фамильным делом Беккерелей. Дед Антуана, Анри Антуан Сезар Беккерель, офицер инженерных войск Франции, уже в зрелом возрасте стал профессором физики и членом Парижской академии наук. Свою долгую жизнь он посвятил исследованию свойств фосфоресценции и флюоресценции. Открыл прозрачность некоторых веществ для ультрафиолетовых лучей, первым дал описание диамагнитных свойств веществ. Сын Антуана Сезара, Александр Эдмон, продолжая дело отца и в течение многих лет сотрудничая с ним (Эдмон пережил отца всего на 12 лет), разработал научную классификацию явлений фосфоресценции, установил основные закономерности этих явлений.