Теперь мы знаем о пульсарах многое. Это очень малые объекты, диаметром в несколько километров. Оказалось, что вещество пульсара при температуре в миллиард градусов ведет себя так, как обычное вещество вблизи абсолютного нуля. Эта нейтронная сверхтекучая «жидкость» окружена тонкой железной «корой». Пульсар быстро вращается, излучая узкий пучок электромагнитных волн, оббегающий пространство подобно лучу прожектора. Когда этот пучок проходит через Землю, приборы регистрируют вспышку излучения пульсара. Период этих вспышек медленно возрастает по мере того, как звезда излучает свою энергию в пространство.
Однако периоды замедления иногда прерываются скачкообразным ускорением вращения. Это связано с «пульсаротрясениями»: натяжения в железной коре в процессе сжатия возрастают настолько, что она ломается и пульсар, уменьшившись в размерах, начинает вращаться быстрее.
Все эти сведения о пульсарах дали расчёты, проведённые на основе теории и наблюдений за изменением периодов их вращения. И эти расчёты бесценны для понимания, для пополнения наших знаний о природе небесных тел. Они не только предсказывают судьбу нашего Солнца и подобных ему небесных тел, но и проливают свет на будущее других светил. Те же расчёты свидетельствуют, что звезда, всего в полтора-два раза более массивная, чем Солнце, не может превратиться в белого карлика. Не станут белыми карликами и звёзды, обладающие ещё большей массой. Так люди узнали, что судьба у звёзд разная!
Очень часто знанию предшествует догадка, предчувствие. И около сорока лет назад, задолго до открытия пульсаров, известный индийский астрофизик Чандрасекар пришёл к тем же выводам, к которым сегодня привели расчёты.
Он писал: «История жизни звёзды малой массы должна существенно отличаться от истории жизни звёзды большой массы. Для звёзды малой массы естественно достигаемое состояние белого карлика является первым шагом к полному угасанию. Звезда с большой массой не может превратиться в белого карлика, и нам необходимо искать другие возможности».
Сейчас это общепризнанный результат. Но тогда этому никто не поверил. Вот что писал, возражая Чандрасекару, маститый астроном Эддингтон: «Звезда будет продолжать излучать и излучать, сжиматься и сжиматься до тех пор, пока она, я полагаю, не достигнет радиуса в несколько километров, тогда гравитация окажется достаточно сильной, чтобы “запереть” излучение, и звезда наконец-то сможет обрести покой».
В 1972 году Чандрасекар сказал по этому поводу:
«Если бы Эддингтон здесь остановился, мы могли бы воздать ему должное за первое предсказание существования “чёрных дыр”»…
Но… Он не остановился. Вот что мы читаем дальше у Эддингтона: «Я чувствую себя насильственно подведённым к выводу, который является почти доведением до абсурда релятивистской формулы вырождения… Я уверен в существовании закона природы, предохраняющего звезду от вступления на этот абсурдный путь».
Так Эддингтон свернул с пути, ведущего к замечательному открытию. А ведь у него уже было больше данных, чтобы приблизиться к истине, чем, скажем, у Лапласа. Однако тот почувствовал возможность существования того, что мы называем «чёрной дырой», почти двести лет назад! Он даже вычислил, какими должны быть масса и радиус звёзды, чтобы ни вещество, ни свет не могли покинуть её поверхности. Лаплас писал об этом в 1798 году. В то время расчёт Лапласа казался курьёзом, далёким от реальности. Однако его результат точно совпадает с тем, который получается из общей теории относительности! Звезду, которая втягивает в себя не только частицы, но и электромагнитные волны, теперь называют «чёрной дырой».
Прежде чем остановиться на этом явлении природы подробнее, ответим на вопрос: что может произойти со звездой, которая слишком массивна для того, чтобы спокойно пойти по пути эволюции через состояние белого карлика к пульсару?
Расчёты показывают, что, скорее всего, процесс приведёт к катастрофе. Сжимаясь под действием гравитационных сил, более не сдерживаемых истощившейся энергией термоядерного синтеза, звезда потеряет устойчивость и испытает подобие колоссального взрыва. При этом огромная часть массы её будет выброшена в пространство. Люди неоднократно наблюдали такие взрывы в виде появления необычайно ярких, быстро угасающих звёзд. Одна из таких «сверхновых» наблюдалась примерно тысячу лет назад, и её остатки мы знаем в форме Крабовидной туманности.
Если выброшенная масса будет такой, что остаток звезды может эволюционировать по пути белого карлика, она постепенно превратится в стабильную нейтронную звезду, в знакомый нам пульсар. Именно это и произошло со «сверхновой» в Крабовидной туманности.
Однако такой вариант не может быть единственным. Более того, он представляется мало вероятным, а значит, сравнительно редким.