— При помощи комбинаций таких сеточек можно измерить длину, мощность волн, которые никаким иным образом не определяются. Можно разделить эти волны на пучки, отражать их, создавать для них резонаторы.
Казалось бы, изящная лабораторная работа — и всё, работа, имеющая право на существование, но… заслуживает ли она внимания серьёзного исследователя?
Сеточки, похожие на приспособление для вышивания, оказались необычайно оригинальной находкой, новым словом в измерительной технике субмиллиметровых волн. Они стали основой очень нужного прибора — спектроскопа, параметры которого существенно превосходят характерис тики всех известных отечественных и зарубежных спектроскопов. Уже несколько лет как этот прибор передан в производство, и наша промышленность выпускает его серийно. На прибор получен десяток заграничных патентов. Не удивительно, что эта оригинальная работа удостоена одной из главных премий АН СССР — премии А.С. Попова.
— Но к третьему этапу работы, к основной цели — исследованию свойств сверхпроводников и сегнетоэлектриков — приступать было ещё рано, — продолжает рассказ Наталья Александровна. — Нам не хватало прибора, на экране которого можно было бы наблюдать невидимое излучение, идущее из недр исследуемого вещества. Ясно было одно: увидеть электромагнитное излучение можно только на люминесцентном экране. Поэтому мы объединили наши силы с Лабораторией люминесценции ФИАНа. Начались поиски подходящих материалов для экрана. Попробовали один — не получилось, другой, третий — опять безрезультатно. Начали усложнять материал, делать его многослойным. Все шло как в банальном детективе — я даже принесла из дому свою шелковую кофточку. Нужен был тонкий материал с хорошими теплоизоляционными свойствами. А что может быть лучше шёлка? Покрыли его аквадагом — взвесью графита в сахарном сиропе — и увидели! Правда, изображение было слабым, неясным. Попробовали слюду, лавсан. Замысел был несложен, но исполнение требовало современной технологии. И, наконец, последний вариант: на синтетическую плёнку лавсана в вакууме нанесли слой металла и сверху покрыли слоем люминофора. И эту плёнку натянули на бабушкины пяльцы…
Считаю, что ослышалась. Ирисова смеётся, — говорит то ли в шутку, то ли всерьёз:
— Идея прибора — плод чисто женской логики. Да, да! Если хотите, в этой логике моя слабость, но и сила. Мне легче думать конкретно, труднее — абстрактно. Я мыслю предметно, могу мысленно «потрогать» каждый миллиметр прибора. Впрочем, я оговорилась. Что значат старые привычки: говоря о малом, в быту говорим — миллиметр. В нашем при боре толщина каждого из слоёв «сэндвича» — доли миллиметра. Слой лавсана — три тысячные миллиметра (три микрона), металла — сто ангстрем (десятитысячных долей микрона), люминофора — опять три микрона.
Если не считать трудности изготовления такого «сэндвича» из слоёв неощутимой толщины, прибор очень прост. Но это не значит — примитивен. Поиски простого решения — одна из труднейших задач в науке, технике, да и в искусстве. Сложное решение обычно говорит о беспомощности. Простое — о том, что всё лишнее отметено. Помните, одно из определений скульптуры: камень, из которого удалено всё лишнее?
Так родился простой, но важнейший прибор. Радиовизор — назвали его учёные. И с ним сразу же произошло чудо.
Радиовизор, созданный, казалось бы, для чисто специфических целей, не имеющий ничего общего с тематикой лаборатории, вдруг стал чуть ли не самым необходимым для этой самой лаборатории. Вообще для лазерщиков.
А случилось это вот почему. Мощный лазер для резки, сварки, штамповки металла работает на волне в 10 микрон. «Нежный» диспрозиевый лазер, созданный в той же лаборатории против опасной болезни глаз — глаукомы — и нашедший применение для лечения злокачественных заболеваний кожи, имеет волну длиною 2,36 микрона. Излучение этих лазеров и почти всех других происходит как раз в том диапазоне волн, для регистрации которых и создан радиовизор. И если на экран радиовизора направить лазерный луч даже невидимого глазом инфракрасного диапазона, вскрывается вся его незримая структура. Невидимый луч становится видимым! Расходящийся он или сужающийся, сколько в нём «мод» (типов колебаний) — видно воочию. Радиовизор позволяет увидеть и распределение поля субмиллиметровых и даже миллиметровых и сантиметровых радиоволн (от 1 микрона до 10 сантиметров).
На экране отчётливо видны интерференция воли, дифракция и другие эффекты классической оптики. Теперь этот прибор можно использовать не только в лаборатории исследователя, но и на школьных уроках физики для наглядной демонстрации волновых свойств электромагнитного излучения.
Конечно же, и лазерщики, и вообще физики приняли такой прибор с восторгом.
— Главное, — объясняет Ирисова, — стало возможным настраивать лазер по картинке на экране радиовизора. Как? У лазера существуют настроечные винты. Но раньше их крутили вслепую, не зная, что при этом происходит. Теперь всё изменилось.