Читаем Кванты и музы полностью

Представьте себе реакцию человека, которому сообщили сенсационную новость: в Азии совсем иные законы природы, чем в Европе. В Азии в отличие от Европы деревья растут вверх корнями…

Нечто похожее произошло в среде физиков, когда молодой датский учёный Нильс Бор высказал свою догадку: в микромире не применимы законы макромира. В атоме — другие законы природы, чем вне его. Если в свободном пространстве заряженное тело при движении по окружности теряет энергию, то внутри атома этого не происходит.

Бор утверждал, что электроны в атоме не подчиняются классической электродинамике: могут вращаться на опре делённых стационарных орбитах, не излучая энергии. Излучение происходит только при переходах электронов с одной из стационарных орбит на другую — более близкую к ядру. Тут электрон выстреливает порцию энергии — квант.

Бор на этом не остановился. Он сообразил, что величина излученной электроном энергии пропорциональна расстоянию между орбитами! (Сказанное нельзя понимать буквально: речь идёт не столько о расстоянии между орбитами в пространстве, сколько о различии энергий электрона на этих орбитах. — Прим. В.Г. Сурдина)

Если электрон перелетит недалеко, скажем, на соседнюю орбиту, он излучит маленький квант — красного цвета. А если перескочит на более дальнюю орбиту, то успеет излучить квант побольше — голубого или даже фиолетового цвета.

Бор своим предположением убил сразу двух зайцев: объяснил устойчивость атома и понял секрет цветных линий в спектрах излучения разных веществ.

Так, прибегнув к квантовой теории, он связал свою модель атома с опытными данными, полученными при помощи спектрального анализа. Поняв, почему в спектре каждого атома множество разноцветных линий — они иллюстрируют способность атома излучать кванты тех или иных цветов, — он сумел раскрыть и секрет строения атома, узнать схему расположения орбит, их возможное количество, расстояния между ними и многое другое.

Этот момент очень важен для истории науки.

Веками имея дело со сравнительно большими телами, люди привыкли считать, что энергию можно делить на произвольные порции. Когда оказалось, что в микромире это невозможно, что в атомных масштабах энергия способна существовать только как совокупность определённых порций — квантов — и что величину квантов надо определять с помощью новых, не известных ещё законов, многие физики от этого просто поначалу отмахнулись. Но когда датский фантазёр догадался, что квантовые законы обуславливают устойчивость атома — это, конечно же, не могло не изменить умонастроение даже отъявленных скептиков. Квантовые законы спасают мир от ультрафиолетовой катастрофы, делают атомы надёжнее крепостных стен — это было уже очень серьёзно. И внимание учёных в первой четверти прошлого столетия обращено на Копенгаген, где на большом творческом подъёме Бор и его единомышленники — молодые учёные разных национальностей — пересматривали старые истины и искали новые.

Психологически это был трудный поворот. Учёные, не успев привыкнуть к тому, что вместо непрерывных процессов, подчиняющихся законам классической физики, в природе царствует дискретность, прерывистость, должны были начинать новую жизнь: привыкать к мысли, что в микромире уже нельзя пользоваться формулами классической физики. Нужно выявлять квантовые законы и применять их для исследования микромира.

Недоумение, с которым встретили физики выход из тупика, указанный Бором, перешло в триумфальное шествие, когда Бор, а за ним теоретики Вильсон и Зоммерфельд начали на основе модели Бора рассчитывать спектры атома водорода. Модель позволяла наглядно представить и возникновение Периодического закона, открытого Менделеевым. Однако восторг сменился разочарованием, когда выяснились некоторые тонкие расхождения между расчётными величинами и наблюдаемыми спектрами водорода, а затем оказалось, что модель не позволяет рассчитать спектры более сложных атомов, даже второго по сложности атома — гелия. Возникла горькая поговорка: «Атом Бора это не атом бора, а атом водорода».

Так трагической неудачей закончился период величайших успехов физики начала прошлого века.

Тогда существовала надежда, что удастся построить наглядную и непротиворечивую картину мира, основанную на трёх простейших элементах: протонах — ядрах атома водорода, из которых образуются все ядра, электронах — ответственных за все электрические и химические явления, и фотонах — объясняющих все оптические явления и их связь со строением атома. Все эти надежды рухнули.

После перерыва, вызванного Первой мировой войной, физики вновь принялись за работу. Впрочем, физики старшего поколения, не призванные в армию, и в эти годы продолжали искать порванные нити старых и новых теорий.

Перейти на страницу:

Похожие книги