Читаем Кванты и музы полностью

Расчёт, проведённый де Бройлем, дал точное совпадение с боровскими орбитами. Более того: де Бройль показал в общих чертах, что его подход может позволить совместить теорию фотонов с явлениями дифракции и интерференции. То есть его предположение удовлетворяло и тех, кто считал свет частицами, и тех, кто определял его как волну. Между этими теориями оказался посредник — электрон, который раньше числился только частицей, а теперь, с лёгкой руки де Бройля, обзавёлся волновыми свойствами. Путь для слияния корпускулярной и волновой теорий света был найден.

Результаты де Бройля ошеломили учёных. Эйнштейн, всегда со вниманием относившийся к работам молодых, писал известному теоретику Борну о диссертации де Бройля:

«Прочтите её! Хотя и кажется, что её писал сумасшедший, написана она солидно».

ЧТО СКАЗАЛ БЫ НЬЮТОН!

Вскоре сверстник де Бройля, недавно скончавшийся Гейзенберг, разработал метод расчёта, позволивший ему, исходя из абстрактных математических принципов и не прибегая к гипотезе «частицы — волны», прийти ко всем результатам, полученным де Бройлем.

При этом он руководствовался оригинальным подходом к построению физических теорий. Он считал, что теория должна вытекать из опыта, описывать и предсказывать его результаты, но промежуточные этапы математических выкладок могут не иметь ничего общего с опытом. Что сказал бы на это Ньютон, все великие достижения которого опирались на опыт и только на опыт!

Самое трудное в этом методе — определить, на какой стадии вычислений получается то, что описывает реальность. Здесь на помощь приходит лишь интуиция и в то время ещё не ясный принцип соответствия, предложенный Бором. Суть этого принципа состояла в том, что законы классической физики должны вытекать из законов квантовой физики в тех случаях, когда квантовыми скачками можно пренебречь, когда явление из микрорамок переходит в макрообласть.

Эйнштейн протестовал против такого «рецептурного» пути в науке, когда для нахождения результата недостаточно учёта наглядных закономерностей и методов, а нужны ещё какие-то необъяснимые критерии. Он считал, что «всякая физическая теория должна быть такой, чтобы ее, помимо всяких расчётов, можно было проиллюстрировать с помощью простейших образов, чтобы даже ребёнок мог её понять».

Прошёл всего год, и важное, новое слово сказал третий молодой гений — Шредингер. Он показал, что между подходами де Бройля и Гейзенберга существует глубокая связь. Он написал знаменитое уравнение, носящее теперь его имя. С помощью этого уравнения можно было рассчитывать волновые процессы де Бройля, не прибегая к рецептурной математике Гейзенберга.

Результаты Шредингера произвели огромное впечатление. Это была настоящая, большая сенсация. Физикам казалось почти чудом, что результаты, получаемые абстрактными, основанными на применении малоизвестной за пределами узкого круга математиков теории матриц (так называется метод Гейзенберга), совпадают с результатами волновой механики (метод де Бройля), оперирующей совершенно иными и более доступными математическими средствами.

Успехи новой квантовой механики, которую некоторые предпочитали называть волновой механикой, омрачались глубокой, скрытой в ней принципиальной трудностью. Она переносила на частицы вещества — электроны и протоны — все противоречия и неясности, которые вновь ввела в оптику теория фотонов.

Теперь электроны и протоны, эти несомненно реальные корпускулы, оказались обладателями каких-то скрытых от непосредственного наблюдения волновых свойств. Свойств, проявляющихся в атомных спектрах, когда электрон выступает не как свободная частица, а как часть атомной системы.

Разумеется, если учёные хотели быть последовательными в этом утверждении, им нужно было продемонстрировать очевидный всем процесс, где проявляются эти волновые свойства частиц. Им необходимо было допустить, например, что поток электронов, проходя, через отверстие, должен обнаружить яв ление дифракции — такое же, как, скажем, у потока фотонов. Об этом, кстати, и говорил де Бройль, ожидая опытного подтверждения теории. Об этом же говорили и скептики, но как о парадоксе, которому суждено опровергнуть волновую механику.

Опыт наконец сказал своё слово. В Нью-Йорке — Девиссон и Джермер, в Абердине — Томсон и Рид, в Москве — Тартаковский независимо обнаружили дифракцию электронов при их прохождении через кристаллы или тонкие металлические фольги. Электроны вели себя, как волны света, морские волны, как любые традиционные объекты природы, обладающие волновыми свойствами! Но каждый электрон при этом оставался частицей…

Так был продемонстрирован дуализм электронов, вернее, дуализм их волновых и корпускулярных свойств. Впоследствии этот дуализм захватил в свою сферу протоны, а затем и все вновь открываемые частицы.

Очередной триумф теории одновременно расширил и углубил трещины в науке о материи, выявил неудовлетворительное состояние глубинных основ познания природы вещества.

Вопрос «волны или частицы?» требовал ответа.

Перейти на страницу:

Похожие книги

Третий звонок
Третий звонок

В этой книге Михаил Козаков рассказывает о крутом повороте судьбы – своем переезде в Тель-Авив, о работе и жизни там, о возвращении в Россию…Израиль подарил незабываемый творческий опыт – играть на сцене и ставить спектакли на иврите. Там же актер преподавал в театральной студии Нисона Натива, создал «Русскую антрепризу Михаила Козакова» и, конечно, вел дневники.«Работа – это лекарство от всех бед. Я отдыхать не очень умею, не знаю, как это делается, но я сам выбрал себе такой путь». Когда он вернулся на родину, сбылись мечты сыграть шекспировских Шейлока и Лира, снять новые телефильмы, поставить театральные и музыкально-поэтические спектакли.Книга «Третий звонок» не подведение итогов: «После третьего звонка для меня начинается момент истины: я выхожу на сцену…»В 2011 году Михаила Козакова не стало. Но его размышления и воспоминания всегда будут жить на страницах автобиографической книги.

Карина Саркисьянц , Михаил Михайлович Козаков

Биографии и Мемуары / Театр / Психология / Образование и наука / Документальное