Читаем Кванты и музы полностью

Например, признав свет потоком фотонов, было естественно считать, что внутренняя полость раскалённой печи наполнена «фотонным газом». Но попытка применить к этому «газу» формулу Планка приводила не к ней, а к давно отвергнутой, ошибочной, «доквантовой» формуле Вина.

Индийский физик Бозе предположил, что корень ошибки — в применении к фотонам тех методов статистики, которые были разработаны для обычных частиц. Но обычные частицы, как думали в то время, вечны, они не рождаются и не гибнут, а фотоны рождаются при испускании и гибнут при поглощении. Иными словами, обычные частицы различимы, их можно, например, перенумеровать. Конечно, не практически, но принципиально это возможно. Фотоны же неразличимы, их нельзя перенумеровать даже в принципе. Если при выводе формул, описывающих статистические свойства частиц, учесть их неразличимость и применить эти формулы к фотонам, то вместо неверного результата Вина получается правильная формула Планка.

Эйнштейну пришлось редактировать немецкий перевод статьи Бозе, в которой излагались эти идеи. Одновременно он познакомился с диссертацией де Бройля, излагавшей волновую механику. Эйнштейн обнаружил глубокую связь этих внешне столь далёких теорий. Он показал, что идеи Бозе могут быть применены не только к фотонам, но к фотонному газу и к обычным газам, если число частиц в них не постоянно. На этом пути он получил ряд новых результатов в старой и, казалось, завершённой области молекулярной физики. Всё более очевидным становилось то, что классичес кая физика является частным случаем квантовой.

Порванные нити старых и новых теорий сближались…

Но для полной стыковки прежней, классической физики и новой время ещё не наступило.

Де Бройль продолжал упорствовать в своём мнении, склоняясь к концепции частиц, считая их волновые свойства в существенной мере формальными, а их появление в теории оправданным только для предсказания статистических свойств, наблюдаемых в опытах, где участвует много частиц.

Шредингер придерживался радикальной точки зрения, заключающейся в том, что частицы сохраняются в науке лишь в силу привычки, в то время как реальными являются волны света и волны на воде, связанные с частицами.

Де Бройль пытался построить компромиссную теорию, в которой частицы выступают как некоторые особенности, «узлы» в волне, но не смог справиться с математическими трудностями на пути описания этой идеи уравнениями. Без уравнений теория мертва. Она не может быть проверена опытом, и де Бройль отложил её до лучших времён.

Однако было в этой точке зрения нечто столь серьёзное, что вызывало симпатию даже Эйнштейна, скептически настроенного по отношению ко многим формальным идеям квантовой физики. Размышляя о механизме вкрапления материи в электромагнитное поле, Эйнштейн писал: «Вещество — там, где концентрация энергии велика, поле — там, где концентрация энергии мала. То, что действует на наши органы чувств в виде вещества, есть на деле огромная концентрация энергии в сравнительно малом пространстве. Мы могли бы рассматривать вещество как такие области в пространстве, где поле чрезвычайно сильно. Таким путём можно было бы создать основы новой философии».

Но в этой новой философии Эйнштейн видел всё-таки прежний фундамент: наглядное представление о предметах спора. Молодые творцы квантовой физики его не поддер живали. Гейзенберг, например, ни о каком компромиссе с прежними физическими воззрениями не помышлял. Он утверждал принципиальную невозможность объективного познания всех свойств частиц одновременно.

Он говорил, что, производя над квантовой системой измерения, чтобы описать исходные данные опыта, мы обязательно вносим в систему возмущения. Такие возмущения не могут быть учтены или вычислены. Поэтому состояние и последующие изменения системы оказываются в существенной мере неопределёнными. В результате, теория не может точно предвычислить результаты опыта. Предсказания теории могут иметь только статистический — вероятностный — характер.

Гейзенберг сформулировал свою идею в виде принципа неопределённости. В простейшем виде его суть состоит в том, что принципиально невозможно совершенно точно определить все характеристики квантовой частицы одновременно. Например, нельзя одновременно точно определить положение и скорость электрона, а значит, невозможно определить точную траекторию его движения.

Споры молодых рассудил Бор. Он предложил оригинальное решение дилеммы «волна или частица». Это решение подсказала Бору идея Гейзенберга, Бор заметил, что при учёте принципа неопределённости волновые и корпускулярные свойства не могут войти в противоречие. Чем точнее определяются волновые свойства частицы, тем неопределённее становятся её корпускулярные характеристики, и наоборот. Бор назвал оба аспекта дополнительными и, придав этому философский смысл, пытался успокоить сомнения физиков. Но принципом дополнительности Бор только разжёг огонь под костром тлеющих сомнений.

Перейти на страницу:

Похожие книги

Третий звонок
Третий звонок

В этой книге Михаил Козаков рассказывает о крутом повороте судьбы – своем переезде в Тель-Авив, о работе и жизни там, о возвращении в Россию…Израиль подарил незабываемый творческий опыт – играть на сцене и ставить спектакли на иврите. Там же актер преподавал в театральной студии Нисона Натива, создал «Русскую антрепризу Михаила Козакова» и, конечно, вел дневники.«Работа – это лекарство от всех бед. Я отдыхать не очень умею, не знаю, как это делается, но я сам выбрал себе такой путь». Когда он вернулся на родину, сбылись мечты сыграть шекспировских Шейлока и Лира, снять новые телефильмы, поставить театральные и музыкально-поэтические спектакли.Книга «Третий звонок» не подведение итогов: «После третьего звонка для меня начинается момент истины: я выхожу на сцену…»В 2011 году Михаила Козакова не стало. Но его размышления и воспоминания всегда будут жить на страницах автобиографической книги.

Карина Саркисьянц , Михаил Михайлович Козаков

Биографии и Мемуары / Театр / Психология / Образование и наука / Документальное