Когда процесс поисков завершался, Пенфилд с коллегами знали, где находится ткань, вызывавшая приступы, и какие важные функции мозга реализуются по соседству. Вооружившись этими знаниями, они могли наиболее эффективно извлечь проблемную ткань, сохранив пациенту способность говорить и двигаться. Эта техника стимуляции мозга в процессе хирургической операции давала пациентам максимальную возможность выкарабкаться, сохранив способность двигаться, говорить и функционировать, как раньше, но с меньшим количеством мучительных приступов или вообще без них. На самом деле этот метод настолько хорош, что широко применяется до сих пор.
В результате анализа мозга сотен людей Пенфилд и его коллеги узнали о расположении карт, описывающих движения и прикосновения, в том числе о расположении соматосенсорной карты S1. У человека, как и у других животных, правая сторона тела представлена в левой стороне мозга, и наоборот. В каждом полушарии мозга эта карта простирается от боковой части мозга (примерно за ухом) до верхушки. Схема строения и расположения карты показана на рис. 11. На одном краю карты (на одной стороне мозга) отображается одна сторона внутренней части рта, язык и губы. По мере продвижения вверх, к верхней части мозга, на карте появляются внешние поверхности лица, а затем большой палец и остальные пальцы руки, а также другие части руки и плеча на этой же стороне тела. Наконец, под самой верхушкой черепа располагается карта торса, таза, ног и ступней этой стороны тела.
Рис. 11.
Схема человеческой тактильной карты S1. Представлена половина карты, соответствующая участкам на противоположной стороне тела.На рисунке наблюдается странность: создается впечатление, что на этой карте элементы “перемешаны”, как в неправильно собранном пазле. Самое странное несоответствие выражается в резком переходе ото лба к большому пальцу руки, хотя в человеческом теле нет функциональной связи между этими частями тела.
Странное соседство лица и большого пальца на карте S1 – пример нарушения непрерывности; это точка, в которой карта отходит от идеального и точного отображения строения тела. В таких точках разрыва нарушается принцип отображения соседних сигналов из внешнего мира (например, прикосновений к соседним точкам на коже) на соседних участках ткани мозга. На большинстве карт эти разрывы невелики, но в некоторых случаях, как на человеческой соматосенсорной карте S1, они могут быть огромными. Чтобы понять смысл этих разрывов, представьте себе кожуру апельсина (рис. 12). Не существует способа представить сферическую поверхность в плоском виде, не разрезав ее или не растянув. Картографы сталкиваются с такой же проблемой, когда создают двумерное изображение поверхности Земли. Где-то нужно сделать разрез, разрушающий непрерывность поверхности сферы. Если читать карту мира буквально, восточная и западная части Тихого океана окажутся на максимальном расстоянии друг от друга, хотя в реальности у них общая вода и одни и те же волны.
Рис. 12.
Трудности изображения трехмерных поверхностей на двумерных картах.Чтобы превратить поверхность сферы в плоский прямоугольник, картографам приходится еще и растянуть части земного шара у полюсов, что приводит к увеличению размера Европы, Северной Америки и Австралии по сравнению с размерами Южной Америки, Африки и других территорий, расположенных ближе к экватору. В таком типе карт, как гомолосинусоидальная проекция Гуда, такого искажения нет, поскольку эта карта не прямоугольная и имеет больше разрезов, как показано на рис. 12.
Конечно, человеческое тело – не сферическое. Оно имеет протяженные выросты (такие как руки, ноги, пальцы) и глубокие и сложные углубления (такие как внутренняя полость рта и горло). И поэтому действительно сложно аккуратно превратить его поверхность в двумерную карту коры мозга. Нужны разумные разрезы и разрывы, как при расплющивании апельсиновой кожуры.