Читаем Лейбниц. Анализ бесконечно малых полностью

С помощью данного изобретения можно было умножать большие числа. Следовало взять соответствующие колонки, чтобы цифры в верхних квадратах образовали искомое число. После этого нужно просто сложить между собой значения из соответствующей строки с учетом их разрядности. Так, для умножения числа 625 на 7 в соответствующем ряду умножения получались значения 4 для тысяч, 3 = 2 + 1 для сотен, 7 = 4 + 3 для десятков и 5 для единиц. То есть 625 х 7 = 4375. Мы можем убедиться в этом, взглянув на рисунок 7. Если нужно умножить большие числа, достаточно выбрать каждый ряд цифр второго множителя и последовательно сложить числа, полученные предыдущим способом. Чтобы умножить 2134 на 732, необходимо распределить таблицы так, как показано на рисунке 8. Суммируются значения, соответствующие каждому множителю. Следует учитывать, что когда мы складываем по диагонали, а сумма больше девяти, как в случае с десятками произведения 2134x3, мы помещаем на их место единицы, а десятки этого результата прибавляются к следующей цифре.

РИС. 7

Произведение сводится к тому, чтобы провести серию сложений, поскольку произведения для каждой цифры уже имеются в таблице. Чтобы провести деление, требуется обратный процесс, вычитание. Если мы хотим разделить 4312 на 625, нужно взять таблички, соответствующие делителю (625), и выполнить все операции умножения в каждой линии с целью найти наиболее близкое к делимому (4312) число, меньшее его. Таким образом мы получаем частное (6), как видно из рисунка 9. Наконец, чтобы найти остаток от деления, мы должны вычесть из 4312 значение 3750, что дает нам в результате 562.

РИС. 8

РИС. 9

Также с помощью таблиц можно совершать возведение в степень, извлечение квадратного и кубического корня.

Непер вошел бы в историю математики, даже если бы не создал этих способов быстрого вычисления. В своей книге, опубликованной ранее, в 1614 году, он представил свое самое важное изобретение: логарифмы. Речь идет о методе, который позволяет превращать произведение в сложение, деление — в вычитание и возведение в степень — в умножение. Упрощение подобных операций было очень полезно, особенно в астрономических вычислениях. Великий французский математик Пьер-Симон де Лаплас (1749-1827) сказал по этому поводу: «Похоже, что сокращением работы по вычислению с нескольких месяцев до нескольких дней изобретение логарифмов удвоило жизнь астрономам».

Логарифм числа b по основанию а определяется как показатель степени, в которую нужно возвести число а, чтобы получить число Ь. В символьном выражении это означает:

logab = х ↔ ах = b.

Например, логарифм 81 по основанию 3 равен 4 (log381 = 4), поскольку З4 = 81.

Нахождением логарифма называется операция, обратная возведению в степень, точно так же, как вычитанием является действие, обратное сложению. Если у нас есть значение суммы и мы знаем одно из слагаемых, поиск другого слагаемого означает вычитание из суммы значения известного слагаемого; следовательно, это обратные операции. Точно так же, если мы знаем значение степени и ее показатель, найти основание равносильно извлечению корня, то есть нахождению корня той же степени из значения данной степени. А если мы знаем основание, нахождение показателя степени превращается в нахождение логарифма по этому основанию значения этой степени. Поскольку сумма двух чисел обладает свойством коммутативности, то есть порядок слагаемых не меняет сумму, у этой операции есть только одна противоположная. Поскольку возведение в степень некоммутативно, существуют две обратные операции, в зависимости от того, известно ли основание или показатель степени.

Наряду с логарифмами по основанию 10, которые обычно просто сокращаются как log или lg, без указания основания, также широко используются логарифмы по основанию е, трансцендентного числа из той же серии, что и знаменитое число я. Эти логарифмы получили название натуральных логарифмов и обычно обозначаются In или loge.

Укажем основные свойства, на которых основывается вычисление с помощью логарифмов и которые верны для любого основания.

— Логарифм произведения двух чисел равен сумме логарифмов этих двух множителей: log (а • b) = loga + logb.

— Логарифм частного двух чисел равен разности между логарифмом числителя и логарифмом знаменателя:

log(a/b) = lig a - log b.

— Логарифм степени равен произведению показателя степени на логарифм основания: logab = b • loga.

Из вышеперечисленных свойств видно, что операции заменяются другими, более простыми. Изначально для применения данного метода было необходимо напрямую работать с таблицами логарифмов.

Метод логарифмического исчисления сразу же взяли на вооружение современики, которые смогли оценить те удобства, которые он обеспечивал. И очень быстро были созданы первые механические инструменты, упрощавшие использование логарифмов.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература