Между прочим, автор этого определения известный логик А. Тарский отмечает, «какую чрезвычайно элементарную форму, с точки зрения психологической, приобретают все математические рассуждения благодаря знанию и применению законов логики и правил вывода; сложные умственные процессы целиком могут быть сведены к выполнению таких простых требований, как внимательное соблюдение положений, ранее принятых за истинные, учет структурных, чисто внешних соотношений между этими положениями и выполнение механических видоизменений согласно предписаниям правил вывода».
К сожалению, именно психологически дело обстоит далеко не так просто. В действительности мышление никогда не протекает, как «выполнение механических видоизменений» высказываний «согласно предписаниям правил вывода». С этой точки зрения, логика не описывает фактического протекания теоретического мышления. Она лишь формулирует его основы — те отношения суждений и высказываний, на которые оно опирается. Как любая абстракция, как всякая идеальная модель, логика представляет теоретическое мышление таким, каким оно должно было бы быть, если бы в нем не действовали никакие факторы, кроме логических отношений, выраженных в своем предельно полном, строгом и сознательном виде.
Фактически это, конечно, не так, да и не может быть так, потому что мыслит не мышление, а человек. Поэтому на протекание даже самого теоретического мышления всегда влияют разнообразнейшие человеческие факторы: привычки и предрассудки, ожидания и установки, чувства и желания и т.д. Да и само протекание мышления происходит с самыми разными степенями сознательности и развернутости.
В частности, почти никогда дедуктивное мышление и доказательство не протекают в голове в виде цепочек полных силлогизмов. Главная посылка умозаключения, устанавливающая общее положение, на основе которого делается вывод, обычно не формулируется «в уме», а часто и вообще не сознается.
«Это число без остатка делится на 3, потому что сумма составляющих его цифр делится на 3». «Кит — млекопитающее. Следовательно, он дышит легкими». «Натрий входит в первую группу таблицы Менделеева. Значит, он одновалентен» и т.п. В такой форме протекают обычно дедуктивные умозаключения фактически.
Нетрудно заметить, что большие посылки, которые представляют общее правило, общий закон, общее положение, дающие основание для указанных заключений, это: «Все числа, сумма цифр которых делится без остатка на 3, сами делятся на 3 без остатка», «Все млекопитающие дышат легкими», «Все элементы, которые входят в первую группу таблицы Менделеева, являются одновалентными». Однако, именно эти предпосылки заключения не формулируются. Их истина подразумевается. Но сами они как бы остаются за кулисами.
Иногда может быть пропущена и меньшая, т.е. частная, посылка. Например, утверждение «Все млекопитающие дышат легкими. Значит, и кит дышит легкими», выступает для нас тоже как абсолютно убедительное. Здесь «за кулисами» остается второе необходимое утверждение: «Кит — млекопитающее» (точнее: «Истинно, что кит — млекопитающее»).
Подобные общие высказывания могут выстраиваться в длинные цепочки. Например:
3 — нечетное число.
Все нечетные числа — натуральные числа.
Все натуральные числа — рациональные числа.
Следовательно, 3 — действительное число.
Умозаключения с опущенными посылками могут в свою очередь выступать как посылки составного рассуждения и т.д.
Например:
Все ромбы—параллелограммы, та как они имеют попарно параллельные стороны.
Все квадраты — ромбы, так как они имеют взаимноперпендикулярные диагонали, делящиеся в точке их пе-ресечения пополам.__
Следовательно, все квадраты параллелограммы.
В логике такие формы умозаключений называют, соответственно, энтимемами, соритами, эпихейремами и пр. Их все считают как бы «выродившимися», «неполными умозаключениями». Однако, психологические исследования дедуктивного мышления (C.J1. Рубинштейн, И. Линдворски, Г. Штеринг, Вайнеке) показали, что это не так. Фактически как раз энтимема составляет психологически первичную форму умозаключения. В этой форме мы делаем выводы. И только если от нас потребуют обстоятельства (чтобы доказать другим), разворачиваем вывод полностью во всех его посылках и промежуточных звеньях.
Перевод вывода в такую «правильную» форму полного умозаключения вызывает какое-то внутреннее сопротивление. Рассуждение типа «Все млекопитающие дышат легкими. Кит — млекопитающее. Кит дышит легкими» кажется крайне искусственным, ужасно скучным, ненужно «разжеванным» и вообще «рассчитанным на дурака».
Почему?
Испытуемые в опытах, которые мы проводили, отвечали: «Потому что здесь много лишнего», «Все и так понятно», «Что млекопитающее дышит легкими, всем известно. Зачем это специально говорить?» и т.п.
Зато те лица, которые испытывали сомнение в истинности заключения, запрашивали добавочную информацию, обычно относившуюся именно к недостающей посылке: «А разве все млекопитающие обязательно дышат легкими?», «Элементы первой группы бывают только одновалентные?» и т.д.