Эта идея звучит знакомо, потому что принцип Шателье похож на ментальную модель
Связанная ментальная модель, которая также возникает в динамических системах и симуляциях, – это гистерезис,
описывающий, как текущее состояние системы зависит от ее истории. Гистерезис также встречается в природе и имеет примеры в большинстве научных дисциплин. В физике, когда вы намагничиваете материал, например, удерживая магнит на куске металла, этот металл не полностью теряет магнитный заряд после того, как вы уберете магнит. В биологии Т-клетки, питающие вашу иммунную систему, после активации требуют более низкого порога для реактивации. Благодаря гистерезису металл и Т-клетки отчасти запоминают свое состояние, и то, что произошло раньше, влияет на то, что произойдет дальше.Опять же эта идея кажется знакомой, потому что она похожа на ментальную модель
Например, в инженерных системах полезно встроить в систему определенный гистерезис, чтобы избежать стремительных изменений. Современные термостаты делают это, допуская диапазон температур, близкий к заданному значению: если вы хотите поддерживать температуру 70 °F (21,1 °C), термостат можно настроить так, чтобы обогреватель включался, когда температура падает до 68 °F (20 °C), и выключался, когда она вырастает до 72 °F (22,2 °C). Таким образом, он не будет постоянно включаться и выключаться. Точно так же на сайтах дизайнеры и разработчики устанавливают задержку при перемещении курсора мыши на такие элементы страницы, как меню. Программы запоминают, что вы просматривали меню, и, когда вы уводите с него курсор, оно не пропадает резко.
Используйте все эти ментальные модели для визуализации и симуляции сложных систем, чтобы лучше оценивать потенциальные результаты и связанные с ними вероятности. Применяйте эти результаты в более простой модели для принятия решения, например для дерева решений или анализа затрат-выгод.
Отдельный тип симуляции, который особенно полезен в этом случае, – это симуляция по методу Монте-Карло.
Как иПервые идеи и попытки, которые я предпринимал, чтобы применить на практике [метод Монте-Карло], были вдохновлены вопросом, который пришел мне в голову в 1946 году, когда я выздоравливал после болезни и раскладывал пасьянсы. Вопрос заключался в том, каковы шансы, что пасьянс «солитер» на 52 карты сойдется? Проведя много времени в попытках оценить ответ с помощью чисто комбинаторных вычислений, я подумал: а что, если более практичный метод, чем «абстрактное мышление», состоит в том, чтобы просто разложить их, допустим, сто раз, понаблюдать и подсчитать число сложившихся раскладов?
Симуляция по методу Монте-Карло – это, на самом деле, множество независимых симуляций со случайными начальными условиями или использованием других случайных чисел внутри самой симуляции.
Проведя симуляцию системы много раз, вы начнете понимать, насколько вероятны на самом деле различные результаты.
Считайте это динамическим анализом чувствительности.