Результаты на листьях дерева решений могут стать утилитарными значениями, объединяющими все затраты и выгоды (материальные и нематериальные) в одном числе для каждого варианта. Если вы сделаете это, ваше решение изменится в противоположную сторону – лучше будет обратиться к вашему обычному подрядчику (подрядчик 2 на дереве решений).
Обратите внимание, что эти решения все еще очень близки, так как у обоих подрядчиков теперь практически одно и то же математическое ожидание! Эта близость показывает силу вероятностных результатов. Несмотря на то, что новый подрядчик связан с более высокими потенциальными «затратами», в 50 % случаев вы все равно рассчитываете заплатить ему гораздо меньше. Эта меньшая сумма сильно снижает математическое ожидание из-за частоты такого результата.
Если ситуация позволяет, мы настоятельно рекомендуем использовать утилитарные значения, поскольку они показывают более полную картину ваших основных предпочтений и приводят к более удовлетворительным решениям.
На самом деле, в более широком смысле существует философия под названием утилитаризм, которая утверждает, что самым этичным решением является то, которое приносит больше всего пользы –
У философии утилитаризма есть множество недостатков. В первую очередь полезные решения, касающиеся многих людей, могут казаться довольно несправедливыми, когда эта полезность неравномерно распределена среди участников (например, неравные доходы, несмотря на растущий уровень жизни). Также утилитарные значения бывает сложно оценить.
В любом случае, деревья решений помогут понять, что делать в ситуациях с большим количеством разнообразных вероятностных исходов. Подумайте о медицинском страховании – стоит ли вам взять план с высокой франшизой и низкими выплатами или с низкой франшизой и высокими выплатами? Это зависит от уровня обслуживания, которого вы ожидаете, и от того, можете ли вы позволить себе менее вероятный сценарий, где вам понадобится выплатить высокую франшизу. (Обратите внимание, что ответ неочевиден, так как по плану с менее высокой франшизой вы будете делать более высокие ежемесячные взносы. Это увеличение взносов может рассматриваться как выплата части вашей франшизы каждый месяц.) Изучите этот сценарий и подобные ему через дерево решений, учитывая ваши предпочтения наряду с фактическими затратами.
Деревья решений особенно полезны, чтобы думать о маловероятных, но очень значительных событиях. Рассмотрите подробнее сценарий медицинского происшествия, при котором вам потребуется выплатить полную франшизу. Некоторых людей такие затраты приводят к банкротству, и поэтому истинная стоимость такого события намного выше, чем фактическая стоимость франшизы.
В результате, если вы окажетесь в этой ситуации, вам стоит показать потери утилитарного значения для этого сценария очень высокими, чтобы отразить свое желание избежать банкротства. Вероятно, это подтолкнет вас к плану с высокой выплатой и низкой франшизой (насколько вы сможете себе их позволить) и с большей гарантией того, что вы избежите банкротства.
Другими словами, если возможен финансовый крах, стоит избегать такого плана, даже если в среднем у него лучший финансовый результат.
В этом типе анализа следует остерегаться «черного лебедя» –
экстремального события с серьезными последствиями (вроде финансового краха), которые намного более вероятны, чем вы изначально ожидаете. Такое название термин получил благодаря распространенному в Европе ложному убеждению, что черных лебедей не существует, хотя на самом деле они всегда заселяли территорию Австралии.Говоря о «черном лебеде» в контексте анализа через дерево решений, вы должны увеличить оценки вероятности маловероятных, но очень значительных сценариев, например банкротства.
Одна из причин, по которой вероятность «черных лебедей» оценивается ошибочно, связана с