3. а) Рассмотрим еще один пример группы—пример, который, однако, имеет для всей теории групп первостепенное значение, так что это даже не пример, а скорее общий метод представления всякой группы вообще. Это именно группа подстановок. Кстати, она теснее свяжет наше изложение с тем, что говорилось вначале относительно дедукции группы вообще.
Мы уже знаем, что такое перестановки. Чтобы получить одну перестановку из другой, надо произвести известную подстановку. Ясно, что всех возможных подстановок η чисел столько же, сколько возможно всех их перестановок. Из трех элементов, как известно, возможны шесть перестановок:
123 123 1 23 123 123
132 321 213 231 312.
Их мы можем понимать как подстановки
[916]причем под каждым верхним числом подписываем то, которое подставляется вместо верхнего. Так, первая подстановка оставляет все число без изменения (т. н. тождественная подстановка); вторая переводит 1 в 1, 2 в 3, 3 в 2; третья цереводит 1 в 3, 2 в 2 и 3 в 1 и т. д. Нетрудно убедиться, что это есть именно группа подстановок, если под композицией понимать последовательное проведение подстановки. Так, «помножим» второй элемент группы на третий: вторая подстановка оставляет 1 без изменения, третья же переводит ее в 3; вторая переводит 2 в 3, третья же 3 в 1; наконец, вторая переводит 3 в 1, третья же 1 в 2; итак, получаем новую подстановку 3, 1, 2, а это есть не что иное, как шестая подстановка. Ассоциативность тут, безусловно, сохранена, но коммутативности не существует—это легко увидеть при соответствующих операциях. Единичным элементом тут является тождественная подстановка, а обратный сразу виден для любой подстановки. Итак, это группа.b) Часто случается, что, изучая разные предметы, мы замечаем, как они при всей своей несхожести выражаются одной и той же группой, для которой существует, таким образом, только одна таблица Кэли. Такие группы называют изоморфными или, точнее, одноступенно–изоморфными. Другими словами, если элементы двух групп можно расположить так, что если A
iA k= A l, то и BiB k=B hто эти группы изоморфны. И вот в теории групп доказывается теорема: всякая отвлеченная группа изоморфна некоторой группе подстановок. Это сразу видно из таблицы Кэли, в которой каждая строка содержит как раз все элементы группы, а переход от одной строки к другой есть только перестановка этих элементов. Если так, то отсюда мы получаем некоторый универсальный метод исчерпывающего представления любой группы, который к тому же замечательно прост и удобен (хотя простота эта скорее теоретическая, а не практическая). Если мы вспомним вышеприведенный пример с вращением равностороннего треугольника, где этих вращений было именно шесть, то эту же самую группу мы можем представить как группу подстановок трех вершин треугольника А, В, С:Так же можно представить и приводившуюся группу шести рациональных функций (представляющую, кстати сказать, группу значений ангармонического отношения
[917]четырех точек на прямой при всевозможных их перестановках).c) Но обратим внимание на то, как мы «перемножаем» подстановки. Тут полная аналогия с «умножением» матриц. Можно поэтому всякую группу представить матрично; всякая группа есть в известном смысле группа матриц. Возвращаясь к нашему примеру группы шести рациональных функций, мы можем представить ее изоморфно в матрицах второго порядка так:
То же в виде матриц третьего порядка так:
соответственно таблице Кэли:
Тут мы возвращаемся к данной вначале диалектической дедукции группы из детерминантно–матричных отношений. Ряд матриц связан здесь единым композиционным принципом, скользящим от одного элемента к другому и охватывающим их все вместе. Выразительная природа композиции сказывается именно в этом тяготении одного элемента к другому, в этом смысловом становлении, которое образуется по причине того, что каждый элемент есть «произведение» двух других и все, таким образом, объяты одним взаимным тяготением.
d) Это делается еще яснее, когда мы стараемся осознать обычно практикуемый в теории групп метод циклического представления. Циклом называется такая подстановка, в которой каждый знак заменяется следующим за ним, а последний—первым. При этом совершенно неважно, с какого знака начинать, лишь бы сохранялся указанный порядок. Ничто не мешает и всякую подстановку расположить так, чтобы смена знаков происходила последовательно, как указано только что; или, точнее, всякая подстановка может быть представлена как произведение циклов, не имеющих общих элементов. Следовательно, всякая подстановка, т. е. всякая группа, в этом смысле циклична, и притом однозначно–циклична. Но циклическое расположение наилучше рисует тот момент в композиции группы, который мы именуем выразительно–становящимся. Цикличность по самому своему смыслу есть нечто становящееся. Поэтому она и отражает в себе наилучше выразительную природу группы. Ведь выражение есть именно фигурно–становящаяся, текучая сущность.