Системный вызов readv() выполняет фрагментированный ввод: он считывает непрерывную последовательность байтов из файла, ссылка на который дается в файловом дескрипторе fd, и помещает («фрагментирует») эти байты в буферы, указанные аргументом iov. Каждый из буферов, начиная с того, что определен элементом iov[0], полностью заполняется, прежде чем readv() переходит к следующему буферу.
Рис. 5.3.
Важным свойством readv() является выполнение всей работы в атомарном режиме, то есть с позиции вызывающего процесса ядро совершает единое портирование данных между файлом, на который указывает fd, и пользовательской памятью. Это означает, к примеру, что при чтении из файла можно быть уверенными, что диапазон считываемых байтов непрерывен, даже если другой процесс (или поток), совместно используя то же файловое смещение, предпринимает попытку манипулировать смещением в то время, когда выполняется системный вызов readv().
При успешном завершении readv() возвращает количество считанных байтов или 0, если встречен конец файла. Вызывающий процесс должен проверить это количество, чтобы убедиться, что были считаны все запрошенные байты. Если было доступно недостаточное количество байтов, то заполненными могут оказаться не все буферы — последние буферы могут быть заполнены лишь частично.
Пример использования вызова readv() показан в листинге 5.2.
Будем придерживаться следующего соглашения: если название файла состоит из префикса t_ и имени функции(…) (например, t_readv.c в листинге 5.2), это значит, что программа главным образом демонстрирует работу одного системного вызова или библиотечной функции.
Листинг 5.2. Выполнение фрагментированного ввода с помощью readv()
fileio/t_readv.c
#include
#include
#include
#include "tlpi_hdr.h"
int
main(int argc, char *argv[])
{
int fd;
struct iovec iov[3];
struct stat myStruct; /* Первый буфер */
int x; /* Второй буфер */
#define STR_SIZE 100
char str[STR_SIZE]; /* Третий буфер */
ssize_t numRead, totRequired;
if (argc!= 2 || strcmp(argv[1], "-help") == 0)
usageErr("%s file\n", argv[0]);
fd = open(argv[1], O_RDONLY);
if (fd == -1)
errExit("open");
totRequired = 0;
iov[0].iov_base = &myStruct
iov[0].iov_len = sizeof(struct stat);
totRequired += iov[0].iov_len;
iov[1].iov_base = &x
iov[1].iov_len = sizeof(x);
totRequired += iov[1].iov_len;
iov[2].iov_base = str;
iov[2].iov_len = STR_SIZE;
totRequired += iov[2].iov_len;
numRead = readv(fd, iov, 3);
if (numRead == -1)
errExit("readv");
if (numRead < totRequired)
printf("Read fewer bytes than requested\n");
printf("total bytes requested: %ld; bytes read: %ld\n",
(long) totRequired, (long) numRead);
exit(EXIT_SUCCESS);
}
fileio/t_readv.c
Системный вызов writev() выполняет
Как и readv(), системный вызов writev() выполняется атомарно, все данные передаются в рамках одной операции из пользовательской памяти в файл, на который ссылается аргумент fd. Таким образом, при записи в обычный файл можно быть уверенными, что все запрошенные данные записываются в него непрерывно, не перемежаясь с записями других процессов (или потоков).
Как и в случае с write(), возможна частичная запись. Поэтому нужно проверять значение, возвращаемое writev(), чтобы увидеть, все ли запрошенные байты были записаны.
Главными преимуществами readv() и writev() являются удобство и скорость. Например, вызов writev() можно заменить:
• кодом, выделяющим один большой буфер и копирующим в него записываемые данные из других мест в адресном пространстве процесса, а затем вызывающим write() для вывода данных из буфера;
• либо серией вызовов write(), выводящих данные из отдельных буферов.
Первый из вариантов, будучи семантическим эквивалентом использования writev(), неудобен (и неэффективен), так как требуется выделять буферы и копировать данные в пользовательском пространстве. Второй вариант не является семантическим эквивалентом одному вызову writev(), так как вызовы write() не выполняются атомарно. Более того, выполнение одного системного вызова writev() обходится дешевле выполнения нескольких вызовов write() (вспомним раздел 3.1).