Исторически реализации, берущие начало из System V, предоставляли флаг O_NDELAY, имеющий сходную с O_NONBLOCK семантику. Основное отличие состояло в том, что неблокирующий системный вызов write() в System V возвращал 0, если write () не мог быть завершен, а неблокирующий вызов read() возвращал 0, если ввод был недоступен. Это поведение создавало проблемы для read(), поскольку было неотличимо от условий, при которых встречался конец файла. Поэтому в первом стандарте POSIX.1 был введен флаг O_NONBLOCK. В некоторых реализациях UNIX по-прежнему предоставляется флаг O_NDELAY со старой семантикой. В Linux определена константа O_NDELAY, но она является синонимом O_NONBLOCK.
Тип данных off_t, используемый для хранения файлового смещения, обычно реализуется как длинное целое число со знаком. (Тип данных со знаком нужен потому, что при ошибке возвращается –1.) На 32-разрядных архитектурах (таких как x86-32) это будет ограничивать размер файлов 231 — 1 байтами (то есть 2 Гбайт).
Но емкость дисковых накопителей давным-давно преодолела это ограничение, и перед 32-разрядными реализациями Unix встала необходимость работать с файлами, превышающими этот размер. Поскольку проблема затрагивала многие реализации, группа поставщиков UNIX приняла решение объединить свои усилия на саммите, посвященном работе с большими файлами — Large File Summit (LFS), с целью улучшения спецификации SUSv2. Планировалось добавить дополнительные функциональные возможности, необходимые для доступа к большим файлам. Усовершенствования, предложенные в рамках LFS, мы рассмотрим в текущем разделе. (Полная LFS-спецификация, работа над которой завершилась в 1996 году, находится по адресу http://opengroup.org/platform/lfs.html.)
В Linux LFS-поддержка для 32-разрядных систем была предоставлена, начиная с версии ядра 2.4 (для чего также требуется версия glibc 2.2 или выше). Кроме того, соответствующая файловая система должна поддерживать большие файлы. Эта поддержка предоставляется большинством свойственных для Linux файловых систем, в отличие от некоторых несвойственных систем (характерными примерами могут послужить разработанные Microsoft файловые системы VFAT и NFSv2, накладывающие жесткие ограничения 2 Гбайт на файл, независимо от того, используются LFS-расширения или нет).
Поскольку для длинных целых чисел на 64-разрядных архитектурах (например, x86-64, Alpha, IA-64) используются 64 бита, на такие архитектуры вообще не влияют ограничения, для преодоления которых были разработаны LFS-усовершенствования. И все же особенности реализации некоторых свойственных Linux файловых систем предполагают, что теоретический максимальный размер может быть меньше 263 — 1 даже в 64-разрядных системах. В большинстве случаев эти ограничения существенно выше, чем современные объемы дисков, поэтому они не накладывают значимых ограничений на размеры файлов.
Создавать приложения, требующие применения функциональных возможностей LFS, можно одним из двух способов.
• Воспользоваться альтернативным API, поддерживающим большие файлы. Он был разработан LFS в качестве «переходного расширения» для спецификации Single UNIX Specification. В результате наличие этого интерфейса не требуется в системах, соответствующих SUSv2 или SUSv3, но многие подобные системы его предоставляют. На данный момент этот подход уже устарел.
• Определить макрос _FILE_OFFSET_BITS со значением 64 при компиляции своей программы. Это наиболее предпочтительный подход, поскольку он позволяет соответствующим приложениям получать функциональные возможности LFS без внесения каких-либо изменений в исходный код.
Чтобы воспользоваться переходным API LFS, нужно при компилировании своей программы определить макрос проверки возможностей _LARGEFILE64_SOURCE либо в командной строке, либо внутри исходного файла перед включением любых заголовочных файлов. Этот API предоставляет функции, способные работать с 64-разрядными размерами файлов и файловыми смещениями. У этих функций такие же имена, как и у их 32-разрядных двойников, но с добавлением к именам функций суффикса 64. К числу таких функций относятся fopen64(), open64(), lseek64(), truncate64(), stat64(), mmap64() и setrlimit64(). (Некоторые из их 32-разрядных двойников уже рассматривались, другие же будут описаны в этой главе чуть позже.)
Чтобы обратиться к большому файлу, нужно просто воспользоваться 64-разрядной версией функции. Например, чтобы открыть большой файл, можно написать следующий код:
fd = open64(name, O_CREAT | O_RDWR, mode);
if (fd == -1)
errExit("open");
Вызов open64() эквивалентен указанию флага O_LARGEFILE при вызове open(). Попытки открыть файл, размер которого превышает 2 Гбайт, с помощью open() без этого флага приведут к возвращению ошибки.
Вдобавок к вышеупомянутым функциям переходный API добавляет несколько типов данных, в числе которых: