Луна не имеет плотной атмосферы, и кажется, будто ничто не мешает космическим аппаратам летать низко над ее поверхностью, над вершинами самых высоких гор. Атмосфера не мешает, это верно, но мешает другое – масконы – неоднородности гравитационного поля Луны. Масконы приводят к быстрой деградации низких орбит космических аппаратов и их падению. Из-за масконов большинство окололунных зондов летали на высоте больше 100 км, а те, которые снижались, делали это на короткий срок и расходовали топливо на коррекцию орбиты.
Космический аппарат LRO летает по полярной эллиптической орбите высотой от 20 до 160 км и регулярно включает двигатели, чтобы корректировать ее. Нижняя точка орбиты проходит над южным полюсом Луны. Средняя высота полета составляет 50 км, с нее узкоугольная «дальнобойная» камера NAC LRO снимает поверхность с линейным разрешением 0,5 м.
Хотя 0,5 м – это довольно высокое качество, сравнимое с лучшими снимками Земли в картах Google и «Яндекса», все равно хотелось бы увидеть места посадок отчетливее. Особенно эффектно смотрелись бы отдельные следы астронавтов как лучшее свидетельство пребывания человека на другом космическом теле.
Космический аппарат LRO обладает необходимым запасом топлива и мог бы кратковременно снизиться, чтобы еще повысить разрешение снимков. Если сократить вдвое высоту, оптика камеры также удвоит разрешение до 0,25 м – его уже достаточно, чтобы рассмотреть отдельные следы людей в виде точек. Однако на камеру космического аппарата действуют другие ограничения, физические и технологические, которые делают бесполезным слишком низкий спуск.
Проблемы создает скорость летящего зонда. Чтобы получить достаточно резкие кадры, надо постараться, чтобы за время получения снимка (длительность выдержки или экспозиции) смещение камеры не превышало ее разрешающую способность. Проще говоря, если снимать поверхность Луны с разрешением 50 см, то за время съемки смещение космического аппарата не должно превышать 50 см. С похожей проблемой сталкивался практически каждый, кто пытался фотографировать пейзажи из окна быстро едущей машины или поезда: близкие объекты оказываются на снимках размазанными, хотя дальние остаются резкими. По этой же причине космический телескоп Hubble не снимает Землю: все его кадры окажутся размытыми из-за слишком быстрого движения телескопа над поверхностью Земли, на съемку которой он не рассчитан.
Каждая из двух камер NAC LRO оборудована сканирующей линейкой, состоящей из 5064 светочувствительных элементов (пикселей) в ширину и 42 элементов в длину. С высоты 50 км на каждый светочувствительный пиксель проецируется изображение поверхности площадью 0,5×0,5 м. Камеры снимают с экспозицией (выдержкой) от 35 до 0,34 миллисекунды, т. е. за это время каждый сканирующий фотоэлемент матрицы должен накопить достаточное количество фотонов, чтобы записать изображение и перейти к регистрации потока света со следующего квадрата местности.
Тут-то и сказывается скорость космического аппарата. На высоте 50 км скорость окололунного аппарата составляет 1656 м/с. Съемка с длинной выдержкой (35 миллисекунд) приведет к тому, что поверхность под спутником сместится на 58 м, на каждый пиксель запишется изображение тех же самых 58 м вместо 0,5 м и кадр будет «сжат» в направлении полета. Только самая короткая выдержка в 0,35 миллисекунды позволяет NAC LRO снимать достаточно резкие кадры с высоты 50 км.
На некоторых этапах полета LRO высота орбиты оказывается ниже 50 км. Даже в штатном режиме полета над экватором нижняя точка орбиты колеблется от 75 до 35 км. В нескольких случаях космический аппарат снижался еще ниже – почти до 21 км. Отсюда ему удалось сфотографировать место посадки Apollo 17 и советский «Луноход-2». Другие места пилотируемых прилунений удавалось снять с высоты 24–25 км, но удвоить разрешение снимков Луны не удалось из-за орбитальной скорости и ограниченной длительности экспозиции.
Луномобиль LRV Apollo 17 (слева) и последняя стоянка «Лунохода-2» (справа) – самые близкие к Луне кадры, снятые LRO с высоты 22 км. NASA
На самой короткой выдержке камера NAC LRO может нормально снимать не ниже 50 км. Снижение высоты полета вдвое приводит к сокращению вдвое и площади наблюдаемой поверхности, но выдержку вдвое укоротить уже невозможно, поэтому на каждый пиксель сканирующей линейки записываются те же 0,5 м, которые пролетают под космическим аппаратом за 0,35 миллисекунды.
Подобный эффект фотографы называют «роллинг шаттер»; он возникает, когда ПЗС-матрица не успевает записывать движение быстрого объекта. На современных фотокамерах такой дефект редко встречается, но не будем забывать, что LRO летает больше десяти лет, а электроника его камеры создавалась вообще в начале 2000-х.
Место посадки Apollo 17, снятое LRO с высоты 138 км, 44 км и 22 км (слева направо). NASA
Самая лучшая на сегодня фотография места прилунения по программе Apollo (Apollo 17), снятая LRO с высоты 22 км. NASA