Улучшенный современными средствами обработки изображений снимок лунного модуля Apollo 17 перед стартом с Луны. NASA, Артем Зубко
Итак, для старта с Луны использовалось топливо с высоким качеством сгорания; трансляция велась при помощи камеры не лучшего по сегодняшним меркам качества; в вакууме ракетная струя разлетается шире, чем у ракет, стартующих с Земли, а значит, плотность ракетной струи меньше. Однако главная причина невидимости реактивной струи лунного корабля – яркий солнечный свет, и в этом можно убедиться, сравнив съемки подъема стартовой ступени лунного модуля Apollo с современными съемками работы ракетных двигателей в вакууме.
Сегодня мы имеем немало возможностей увидеть работу двухкомпонентных ракетных двигателей непосредственно в космосе – на низкой околоземной орбите или у поверхности Луны. Работу кислород-керосинового ракетного двигателя Merlin 1D можно наблюдать во время трансляции пусков ракеты Falcon 9. Высокое качество записи и множество камер позволяют увидеть полет на всех этапах выведения – с момента старта и до отделения полезной нагрузки на целевой орбите. Практически во время каждого невоенного запуска можно увидеть работу двигателя в вакууме с камеры, размещенной на самой ракете.
Видимость пламени кислород-керосинового ракетного двигателя Merlin 1D в вакууме в зависимости от условий освещения: днем (слева) и ночью (справа). SpaceX
Правда, ракеты SpaceX летают на кислород-керосиновой топливной паре и в секунду расходуют 330 кг топлива, выдавая тягу 93 т в вакууме, чем сильно отличаются от двигателя лунного модуля. Примеры, более близкие к лунному старту по составу топлива и по его расходу, можно увидеть в полете космических кораблей Space Shuttle, «Прогресс», «Союз» или модуля МКС «Звезда».
Российские грузовые корабли серии «Прогресс» и пилотируемые «Союзы» регулярно стыкуются с Международной космической станцией. Стыковки можно наблюдать в прямом эфире или посмотреть записи телетрансляции, на этих кадрах видна работа двигателей причаливания и ориентации тягой 13,3 кг. Также можно посмотреть записи стыковки европейского тяжелого грузового корабля ATV с МКС. Его двигатели ориентации обеспечивали тягу 22 кг.
Таким образом, мы можем увидеть в деле двигатели причаливания и ориентации космических кораблей в условиях вакуума и при разных режимах солнечного освещения. И здесь становится очевидно, что видимость ракетных струй напрямую зависит от уровня освещения и настроек камеры. В разные моменты времени, в зависимости от источников света в поле видимости, автоматика камеры меняет светочувствительность, и от этого зависит, видим мы работу двигателей или нет. Когда камера снижает светочувствительность, чтобы избежать засветки, хорошо видна поверхность корабля, но работа ракетных двигателей не видна, или виднеются только небольшие участки струи с наибольшей плотностью непосредственно у сопла. Когда светочувствительность повышается и корпус корабля оказывается засвеченным, тогда проявляются фонтаны газа из двигателей.
Стыковка грузового корабля «Прогресс МС-16» в условиях прямого солнечного освещения и в нескольких режимах камеры. NASA
Другие условия возникают, если съемка идет на теневой стороне Земли. Тогда наоборот: светочувствительность камеры высока, но элементы корабля все равно едва видны из-за слабого освещения, зато можно наблюдать бледно светящуюся струю ракетных газов.
Стыковка корабля ATV-3 с российским сегментом МКС. Видна работа двигателей ориентации корабля и служебного модуля «Звезда». Роскосмос
Третий режим съемки, наиболее удобный для наблюдения ракетного выхлопа, – когда корабль на теневой стороне Земли, но освещается отраженным от нашей планеты солнечным светом.
Наиболее близкий из доступных съемок аналог старта Apollo с Луны – это моменты включения орбитальных двигателей кораблей Space Shuttle. Двигатели коррекции шаттлов, или Orbital Maneuvering System (OMS) модели AJ-10, имели тягу около 3 т каждый, что довольно близко к тяге главного двигателя стартовой ступени лунного модуля Apollo – 1,6 т. Топливные компоненты также схожи: у шаттла это топливная пара монометилгидразин/тетраоксид азота, у Apollo – аэрозин/тетраоксид азота. Включение двигателей OMS можно наблюдать в записях стартов шаттлов в моменты отделения внешнего топливного бака – большой оранжевой цистерны, которая питала стартовые кислород- водородные двигатели. Многократно записанный момент разделения бака и корабля позволяет увидеть один и тот же процесс в разных условиях освещения. Шаттлы стартовали и днем, и ночью, потоки реактивных газов OMS освещались солнцем под всевозможными углами.
Включение двигателей коррекции Space Shuttle в отраженном от Земли свете. NASA