Если посмотреть на разные типы стартующих с Земли ракет, то можно увидеть заметную разницу в прозрачности и цвете пламени. Так, у кислород-керосиновых ракет (Saturn V, «Союз», Falcon 9) в момент старта плотная оранжевая струя пламени, которая едва прозрачна. Самую плотную струю дает старт ракеты с твердотопливными ускорителями. Если же взглянуть на старт ракет на несимметричном диметилгидразине (гептиле)/тетраоксиде азота («Протон», «Днепр», Titan III), то можно увидеть струю пламени намного более светлую, полупрозрачную. Кислород-водородные и кислород-метановые двигатели дают почти прозрачный голубоватый огонь.
Разница в прозрачности ракетной струи в зависимости от типа топлива (слева направо): твердое топливо (боковые ускорители), керосин-кислород, водород-кислород, несимметричный диметилгидразин/тетраоксид азота. NASA, Роскосмос
Прозрачность струи ракетного пламени напрямую зависит от качества сгорания топлива и количества оставшихся сажевых частиц. Керосин сгорает не полностью, и несгоревшие частицы, выбрасываемые из сопла, светятся, частично перекрывая взору пространство по другую сторону ракеты. Если посмотреть старт керосиновой ракеты издалека, то можно увидеть след черной копоти – это те самые частицы сажи, только уже остывшие.
Горючее из семейства производных аммиака (гидразин, гептил) сгорает намного чище, хотя само топливо довольно токсично до реакции в камере сгорания. Сейчас на таком горючем летают только устаревшие ракеты России и Китая. Зато в космосе гидразин сохраняет свою популярность как горючее космических аппаратов. Разработчикам орбитальной техники гидразин нравится за простые условия хранения – практически комнатную температуру для горючего и окислителя. Второе преимущество гидразина и гептила – они самовоспламеняются при контакте с окислителем.
Стартовая ступень лунного модуля Apollo (Ascent stage) использовала двигатель на аэрозине (смесь гептила и гидразина) в качестве горючего и окислителе (тетраоксид азота). То есть пламя стартующего лунного модуля можно сравнить с пламенем ракеты «Протон-М». Разница только в том, что каждый двигатель «Протона-М» выбрасывает в секунду около 500 кг топлива, а взлетающий лунный модуль – 4,5 кг, т. е. примерно в 100 раз меньше. При такой плотности газа заметить его в ярком солнечном свете было практически невозможно, несмотря на его высокую температуру.
Струя пламени одного и того же двигателя в условиях атмосферного давления и в вакууме будет отличаться.
Когда мы наблюдаем старт ракеты с космодрома своими глазами или смотрим трансляцию, то видим работу ракетного двигателя в условиях земного атмосферного давления. Наша атмосфера препятствует ракете не только посредством аэродинамического сопротивления у головного обтекателя, но и воздействуя на струю реактивных газов из сопла. Узкий факел пламени у стартующей ракеты – это результат взаимодействия реактивных газов сгорающего топлива и атмосферы. Если проследить за полетом ракеты, то можно заметить, как меняется форма пламени в зависимости от высоты полета, т. е. изменения атмосферного давления.
Изменение формы и яркости струи ракетных газов первой ступени по мере подъема ракеты Falcon 9. Чем больше высота и ниже атмосферное давление, тем шире факел, меньше плотность струи и ниже ее яркость. SpaceX
Работа ракетного двигателя ориентации модуля «Звезда» Международной космической станции. Роскосмос/Олег Артемьев
В момент старта диаметр струи реактивных газов, вырывающейся из сопла, примерно равен диаметру ракеты. По мере подъема уменьшается атмосферное давление, и на высоте 10 км уже заметно расширение струи. На высоте 50 км струя пламени теряет прежнюю плотность и расходится от сопла под широким углом, теряя при этом свечение, за исключением небольшой области у самого сопла. Точно так же ведет себя выхлоп химических ракетных двигателей в космическом вакууме, в том числе непосредственно у поверхности Луны.
Работу ракетных двигателей в вакууме увидеть сложнее. Непосредственно это доступно только космонавтам, нам же остаются только фото и видео с орбиты. Однако таких записей трансляций стартов Space Shuttle и стыковок кораблей «Союз», «Прогресс» и ATV с Международной космической станцией опубликовано немало.
Старт с Луны происходил в конце лунного утра, когда все пространство было залито яркими солнечными лучами, а съемка велась с солнечной стороны. Хотя на Луне нет голубого неба, как на Земле, но сравнивать старт лунного модуля с ночными запусками ракет с земных космодромов будет ошибкой из-за разницы в освещенности. На Луну падает света даже больше, чем на Землю, из-за отсутствия атмосферы и света, который отражается и рассеивается атмосферой нашей планеты.
Возвращаемая ступень лунного модуля покрывалась светло- серой и бежевой теплоизоляцией, которая хорошо отражала свет. Поэтому камера, снимающая старт корабля, настраивалась на слабую светочувствительность, чтобы кадры не оказались засвеченными.