Речь пойдет о проблеме, до сих пор лишь бегло упоминавшейся на страницах этой книги, а именно о проблеме теплового излучения. Вы знаете, что нагретые тела излучают энергию. Это может быть тепло хорошо протопленной печи, свечение спирали электрической плитки, свет, испускаемый лампой накаливания, тепловое излучение Солнца, в недрах которого температура достигает миллионов градусов. Хорошо известно также, что различные тела обладают способностью в большей или меньшей степени поглощать свет. Например, оконное стекло почти не поглощает света, но стоит сдвинуть шторы, как в комнате становится сумрачно — свет поглощается материалом штор. Сильно поглощающие свет тела кажутся нам черными, примером такого тела является сажа. Ученые-физики не могли пройти мимо проблемы изучения и объяснения закономерностей излучательной и поглощательной способностей различных тел.
Одним из исследователей этой проблемы был немецкий физик Г. Кирхгоф, в лаборатории которого в свое время проходил стажировку и Л. Больцман. Кирхгоф еще в 1859 г. установил следующее правило: когда какая-либо физическая система приходит в тепловое равновесие, поглощаемая телом энергия и отдаваемая им в форме излучения становятся равны друг другу. Математически закон Кирхгофа записывается в следующем виде:
где E(ν,T) — излучательная способность тела, зависящая от частоты излучения
Кирхгоф ввел в физику чрезвычайно важное понятие абсолютно черного тела, т. е. тела, поглощающего всю падающую на него энергию независимо от частоты излучения. Для такого тела
В природе таких тел нет, но в качестве аналога абсолютно черного тела можно использовать полость с небольшим отверстием, внутренние стенки которого хорошо проводят теплоту (рис. 16). В таком ящике излучение, попадающее внутрь полости, испытывает многократные отражения от стенок и в конце концов полностью поглощается. Кирхгоф обратил внимание на то, что для абсолютно черного тела
Идею экспериментального определения функции ε(ν,T) предложил сам Кирхгоф. Из небольшого отверстия в стенке полости абсолютно черного тела надо вывести излучение, а затем разложить его в частотный спектр. Преодолев экспериментальные трудности, физики к началу XX в. уже знали экспериментальную зависимость ε(ν,T) (рис. 17).
Однако получить теоретическую формулу, совпадающую с полученными экспериментальными данными, долгое время никому не удавалось. С точки зрения истории развития физики эти трудности легко объяснить. Излучение долгое время представляло для ученых новый и трудный для изучения объект. Со времен Максвелла физики знали, что излучение имеет электромагнитную природу, но найти теоретический подход к описанию свойств излучения было непросто. Характерно, что для теоретического обоснования экспериментально полученного закона излучения абсолютно черного тела применялись термодинамические методы и принципы. Еще Кирхгоф применял для доказательства своего закона термодинамическое правило, согласно которому достигнутое в изолированной системе равновесие сохраняется сколь угодно долго и не может быть нарушено теплообменом между частями системы. Следовательно, излучающее тело можно представлять заключенным в оболочку постоянной температуры и непроницаемую для излучения. В результате теплообмена тело принимает температуру оболочки.
Важное место в исследованиях теплового излучения занимают труды учителя Больцмана Й. Стефана. По мере развития кинетической теории газов в середине XIX столетия резко возрос интерес к проверке развитой Д. Максвеллом теории теплопроводности газов. Стефан экспериментально установил полное соответствие опытных данных с предсказаниями теории, что справедливо рассматривалось тогда как один из важных аргументов в пользу справедливости молекулярно-кинетической теории. Логичным продолжением этих работ явилось опубликованное Й. Стефаном в 1874 г. исследование «О связи между тепловым излучением и температурой», где он, обратив внимание на имеющиеся в то время несовпадения экспериментальных результатов различных авторов, устанавливает, что полное количество теплоты
Этот закон позволял уже судить и о виде функции Кирхгофа.