Читаем Логика полностью

Наше представление о доказательстве как особой интеллектуальной операции формируется в процессе проведения конкретных доказательств. Изучая разные области знания, мы усваиваем и относящиеся к ним доказательства. На этой основе мы постепенно составляем — чаще всего незаметно для себя — общее интуитивное представление о доказательстве как таковом, его общей структуре, не зависящей от конкретного материала, о целях и смысле доказательства и т.д.

Изучение доказательства на конкретных его образцах и интересно, и полезно. Но также необходимо знакомство с основами логической теории доказательства, которая говорит о доказательствах безотносительно к области их применения. Практические навыки доказательства и интуитивное представление о нем достаточны для многих целей, но далеко не для всех. Практика и здесь, как обычно, нуждается в теории.

Логическая теория доказательства в основе своей проста и доступна, хотя её детализация требует специального символического языка и другой изощрённой техники современной логики.

Под доказательством в логике понимается процедура установления истинности некоторого утверждения путём приведения других утверждений, истинность которых уже известна и из которых с необходимостью вытекает первое.

В доказательстве различаются тезис — утверждение, которое нужно доказать, основание (аргументы) — те положения, с помощью которых доказывается тезис, и логическая связь между аргументами и тезисом. Понятие доказательства всегда предполагает, таким образом, указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются преобразования утверждений в ходе доказательства.

К примеру, нужно доказать тезис «Все металлы проводят электрический ток». Подбираем в качестве аргументов утверждения, которые являются, во-первых, истинными и из которых, во-вторых, логически вытекает тезис. В качестве таких утверждений можно принять, в частности, следующие: «Все вещества, имеющие в своей кристаллической решётке свободные электроны, проводят электрический ток» и «Все металлы имеют в своей кристаллической решётке свободные электроны». Строим умозаключение:

Все вещества, имеющие в своей кристаллической решётке свободные электроны, проводят электрический ток.

Все металлы имеют в своей кристаллической решётке свободные электроны.

Все металлы проводят электрический ток.

Данное умозаключение является правильным (оно представляет собой категорический силлогизм), посылки его истинны; значит, умозаключение является доказательством исходного тезиса.

Доказательство — это правильное умозаключение с истинными посылками. Логическую основу каждого доказательства (его схему) составляет логический закон.

Доказательство — это всегда в определённом смысле принуждение.

Философ XVII в. Т. Гоббс до сорока лет не имел представления о геометрии. Впервые в жизни прочитав формулировку теоремы Пифагора, он воскликнул: «Боже, но это невозможно!» Но затем шаг за шагом он проследил все доказательство, убедился в его правильности и смирился. Ничего другого, собственно, и не оставалось.

Мы уверены, к примеру, что важными показателями богатства нашего языка являются его индивидуальность, стилистическая гибкость, умение обо всем говорить «своими словами». В таком случае мы должны признать также, что язык обезличенный, лишённый индивидуальности, основывающийся на чужих оборотах и выражениях и потому серый, бездушный и трафаретный, не может считаться богатым и полноценным.

Источником «принудительной силы» доказательств являются логические законы мышления, лежащие в их основе. Именно данные законы, действуя независимо от воли и желаний человека, заставляют в процессе доказательства с необходимостью принимать одни утверждения вслед за другими и отбрасывать то, что несовместимо с принятым.

Задача доказательства — исчерпывающе утвердить обоснованность доказываемого тезиса.

Раз в доказательстве речь идёт о полном подтверждении, связь между аргументами и тезисом должна носить дедуктивный характер.

По своей форме доказательство — дедуктивное умозаключение или цепочка таких умозаключений, ведущих от истинных посылок к доказываемому положению.

Обычно доказательство протекает в очень сокращённой форме.

Видя чистое небо, мы заключаем: «Погода будет хорошей». Это доказательство, но до предела сжатое. Опущено общее утверждение: «Всегда, когда небо чистое, погода будет хорошей». Опущена также посылка: «Небо чистое». Оба эти утверждения очевидны, их незачем произносить вслух.

Встретив идущего по улице человека, мы отмечаем: «Обычный прохожий». За этой констатацией опять-таки стоит целое рассуждение. Но оно настолько обычное и простое, что протекает почти неосознанно.

Перейти на страницу:

Похожие книги

Сериал как искусство. Лекции-путеводитель
Сериал как искусство. Лекции-путеводитель

Просмотр сериалов – на первый взгляд несерьезное времяпрепровождение, ставшее, по сути, частью жизни современного человека.«Высокое» и «низкое» в искусстве всегда соседствуют друг с другом. Так и современный сериал – ему предшествует великое авторское кино, несущее в себе традиции классической живописи, литературы, театра и музыки. «Твин Пикс» и «Игра престолов», «Во все тяжкие» и «Карточный домик», «Клан Сопрано» и «Лиллехаммер» – по мнению профессора Евгения Жаринова, эти и многие другие работы действительно стоят того, что потратить на них свой досуг. Об истоках современного сериала и многом другом читайте в книге, написанной легендарным преподавателем на основе собственного курса лекций!Евгений Викторович Жаринов – доктор филологических наук, профессор кафедры литературы Московского государственного лингвистического университета, профессор Гуманитарного института телевидения и радиовещания им. М.А. Литовчина, ведущий передачи «Лабиринты» на радиостанции «Орфей», лауреат двух премий «Золотой микрофон».

Евгений Викторович Жаринов

Искусствоведение / Культурология / Прочая научная литература / Образование и наука