Читаем Логика полностью

Философ А.Шопенгауэр считал математику довольно интересной наукой, но не имеющей никаких приложений, в том числе и в физике. Он даже отвергал саму технику строгих математических доказательств. Шопенгауэр называл их мышеловками и приводил в качестве примера доказательство известной теоремы Пифагора. Оно является, конечно, точным: никто не может счесть его ложным. Но оно представляет собой совершенно искусственный способ рассуждения. Каждый шаг его убедителен, однако к концу доказательства возникает чувство, что вы попали в мышеловку. Математик вынуждает вас допустить справедливость теоремы, но вы не получаете никакого реального понимания. Это все равно, как если бы вас провели через лабиринт. Вы наконец выходите из лабиринта и говорите себе: «Да, я вышел, но не знаю, как здесь очутился».

Позиция Шопенгауэра, конечно, курьёз, но в ней есть момент, заслуживающий внимания. Нужно уметь проследить каждый шаг доказательства. Иначе его части лишатся связи, и оно может рассыпаться, как карточный домик. Но не менее важно понять доказательство в целом, как единую конструкцию, каждая часть которой необходима на своём месте. Как раз такого целостного понимания не хватало, по всей вероятности, Шопенгауэру.

В итоге в общем-то простое доказательство представилось ему блужданием в лабиринте: каждый шаг пути ясен, но общая линия движения покрыта мраком.

Доказательство, не понятое как целое, ни в чем не убеждает; Даже если выучить его наизусть, предложение за предложением; к имеющемуся знанию предмета это ничего не прибавит.

Все доказательства делятся по своей структуре, по общему ходу мысли на прямые и косвенные.

При прямых доказательствах задача состоит в том, чтобы найти убедительные аргументы, из которых логически вытекает тезис.

Косвенные доказательства устанавливают справедливость тезиса тем, что вскрывают ошибочность противоположного ему допущения, антитезиса.

Например, нужно доказать, что кометы подчиняются действию законов небесной механики. Известно, что эти законы универсальны: они распространяются на все тела в любых точках космического пространства. Очевидно, также, что кометы являются телами. Отметив это, строим умозаключение:

Все космические тела подпадают под действие законов небесной механики.

Кометы — космические тела.

Следовательно, кометы подчиняются данным законам.

Это прямое доказательство, осуществляемое в два шага: подыскиваются подходящие аргументы и затем демонстрируется, что из них логически вытекает тезис.

Ещё один пример: нужно доказать, что сумма углов четырехугольника равна 360°. Из каких утверждений можно было бы вывести этот тезис? Отмечаем, что диагональ делит четырехугольник на два треугольника. Значит, сумма его углов равна сумме углов двух треугольников. Известно, что сумма углов треугольника составляет 180°. Из этих положений выводим, что сумма углов четырехугольника равна 360°.

В построении прямого доказательства можно выделить два связанных между собою этапа: отыскание тех признанных обоснованными утверждений, которые способны быть убедительными аргументами для доказываемого положения; установление логической связи между найденными аргументами и тезисом. Нередко первый этап считается подготовительным, и под доказательством понимается дедукция, связывающая подобранные аргументы и доказываемый тезис.

В косвенном доказательстве рассуждение идёт как бы окольным путём. Вместо того, чтобы прямо отыскивать аргументы для выведения из них доказываемого положения, формулируется антитезис, отрицание этого положения. Далее тем или иным способом показывается несостоятельность антитезиса. По закону исключённого третьего, если одно из противоречащих друг другу утверждений ошибочно, второе должно быть верным. Антитезис ошибочен, значит, тезис является верным.

Поскольку косвенное доказательство использует отрицание доказываемого положения, оно является, как говорят, доказательством от противного.

Допустим нужно построить косвенное доказательство такого весьма тривиального тезиса: «Пятиугольник не является окружностью». Выдвигается антитезис: «Пятиугольник есть окружность». Необходимо показать ложность этого утверждения. С этой целью выводим из него следствия. Если хотя бы одно из них окажется ложным, это будет означать, что и само утверждение, из которого выведено следствие, также ложно. Неверным является, в частности, такое следствие: у пятиугольника, поскольку он есть окружность, нет углов, и у пятиугольника, как такового, есть углы. Поскольку антитезис ложен, исходный тезис должен быть истинным.

Другой пример. Врач, убеждая пациента, что тот не болен гриппом, рассуждает так. Если бы действительно был грипп, имелись бы характерные для него симптомы: головная боль, повышенная температура и т.п. Но ничего подобного нет. Значит, нет и гриппа.

Перейти на страницу:

Похожие книги

Сериал как искусство. Лекции-путеводитель
Сериал как искусство. Лекции-путеводитель

Просмотр сериалов – на первый взгляд несерьезное времяпрепровождение, ставшее, по сути, частью жизни современного человека.«Высокое» и «низкое» в искусстве всегда соседствуют друг с другом. Так и современный сериал – ему предшествует великое авторское кино, несущее в себе традиции классической живописи, литературы, театра и музыки. «Твин Пикс» и «Игра престолов», «Во все тяжкие» и «Карточный домик», «Клан Сопрано» и «Лиллехаммер» – по мнению профессора Евгения Жаринова, эти и многие другие работы действительно стоят того, что потратить на них свой досуг. Об истоках современного сериала и многом другом читайте в книге, написанной легендарным преподавателем на основе собственного курса лекций!Евгений Викторович Жаринов – доктор филологических наук, профессор кафедры литературы Московского государственного лингвистического университета, профессор Гуманитарного института телевидения и радиовещания им. М.А. Литовчина, ведущий передачи «Лабиринты» на радиостанции «Орфей», лауреат двух премий «Золотой микрофон».

Евгений Викторович Жаринов

Искусствоведение / Культурология / Прочая научная литература / Образование и наука