Читаем Логика полностью

Символ v будет обозначать дизъюнкцию в неисключающем смысле, для дизъюнкции в исключающем смысле будет использоваться символ V. Таблицы для двух видов дизъюнкции показывают, что неисключающая дизъюнкция истинна, когда хотя бы одно из входящих в нее высказываний истинно, и ложна, только когда оба ее члена ложны; исключающая дизъюнкция истинна, когда истинным является только один из ее членов, и она ложна, когда оба ее члена истинны или оба ложны.

В логике и математике слово "или" всегда употребляется в неисключающем значении.

Разложение некоторого высказывания на простые, далее неразложимые части дает два вида выражений, называемых собственными и несобственными символами. Особенность собственных символов в том, что они имеют какое-то содержание, даже взятые сами по себе. К ним относятся имена (обозначающие некоторые объекты), переменные (отсылающие к какой-то области объектов), высказывания (описывающие какие-то ситуации и являющиеся истинными или ложными). Несобственные символы не имеют самостоятельного содержания, но в сочетании с одним или несколькими собственными символами образуют сложные выражения, уже имеющие самостоятельное содержание. К несобственным символам относятся, в частности, логические связки, используемые для образования сложных высказываний из простых: "… и…", "… или…", "либо…, либо…", "если…, то…", "… тогда и только тогда, когда…", "ни…, ни…", "не…, а…", "…, но не…", "неверно, что…" и т. п. Само по себе слово, скажем "или", не обозначает никакого объекта. Но в совокупности с двумя собственными, обозначающими символами это слово дает новый обозначающий символ: из двух высказываний "Письмо получено" и "Телеграмма отправлена" — новое высказывание "Письмо получено или телеграмма отправлена".

Центральная задача логики — отделение правильных схем рассуждения от неправильных и систематизация первых. Логическая правильность определяется логической формой. Для ее выявления нужно отвлечься от содержательных частей рассуждения (собственных символов) и сосредоточить внимание на несобственных символах, представляющих эту форму в чистом виде. Отсюда интерес формальной логики к таким, обычно не привлекающим внимания, словам, как "и", "или", "если, то" и т. п.[2].

<p><strong>2. Условное высказывание, импликация, эквивалентность</strong></p>

Условное высказывание — сложное высказывание, формулируемое обычно с помощью связки "если…, то…" и устанавливающее, что одно событие, состояние и т. п. является в том или ином смысле основанием или условием для другого. Например: "Если есть огонь, то есть дым", "Если число делится на 9, оно делится на 3" и т. п.

Условное высказывание слагается из двух простых высказываний. То, которому предпослано слово "если", называется основанием, или антецедентом (предыдущим); высказывание, идущее после слова "то", называется следствием, или консеквентом (последующим).

Утверждая условное высказывание, мы прежде всего имеем в виду, что не может быть так, чтобы то, о чем говорится в его основании, имело место, а то, о чем говорится в следствии, отсутствовало. Иными словами, не может случиться, чтобы антецедент был истинным, а консеквент — ложным.

В терминах условного высказывания обычно определяются понятия достаточного и необходимого условия: антецедент (основание) есть достаточное условие для консеквента (следствия), а консеквент — необходимое условие для антецедента. Например, истинность условного высказывания "Если выбор рационален, то выбирается лучшая из имеющихся альтернатив" означает, что рациональность — достаточное основание для избрания лучшей из имеющихся возможностей, и что выбор такой возможности есть необходимое условие его рациональности.

Типичной функцией условного высказывания является обоснование одного высказывания ссылкой на другое высказывание. К примеру, то, что серебро электропроводно, можно обосновать ссылкой на то, что оно металл: "Если серебро — металл, оно электропроводно".

Перейти на страницу:

Похожие книги

Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература