Читаем Логика полностью

Импликация, в частности, не предполагает, что высказывания А и В как-то связаны между собой по содержанию. В случае истинности В высказывание "если А, то В" истинно независимо от того, является А истинным или ложным и связано оно по смыслу с В или нет. Истинными считаются, например, высказывания: "Если на Солнце есть жизнь, то дважды два равно четырем", "Если Волга — озеро, то Токио — большой город" и т. п. Условное высказывание истинно также тогда, когда А ложно, и при этом опять-таки безразлично, истинно В или нет и связано оно по содержанию с А или нет. К истинным относятся, к примеру, высказывания: "Если Солнце — куб, то Земля — треугольник", "Если дважды два равно пяти, то Токио маленький город" и т. п. В обычном рассуждении все эти высказывания вряд ли будут рассматриваться как имеющие смысл и еще в меньшей степени как истинные.

Очевидно, что хотя импликация полезна для многих целей, она не совсем согласуется с обычным пониманием условной связи. Импликация охватывает многие важные черты "логического поведения" условного высказывания, но вместе с тем не является достаточно адекватным его описанием.

В последние полвека были предприняты энергичные попытки реформировать теорию импликации. При этом речь шла не об отказе от описанного понятия импликации, а о введении, наряду с ним, другого понятия, учитывающего не только истинностные значения высказываний, но и связь их по содержанию.

С импликацией тесно связана эквивалентность, называемая иногда "двойной импликацией".

Эквивалентность — сложное высказывание "А, если и только если В", образованное из высказываний А и В и разлагающееся на две импликации: "если А, то В" и "если В, то А". Например: "Треугольник является равносторонним, если и только если он является равноугольным". Термином "эквивалентность" обозначается и связка"…, если и только если…", с помощью которой из двух высказываний образуется данное сложное высказывание. Вместо"…, если и только если…" для этой цели могут использоваться"… в том и только том случае, когда…", "… тогда и только тогда, когда…" и т. п.

Если логические связки определяются в терминах истины и лжи, эквивалентность истинна тогда и только тогда, когда оба составляющие ее высказывания имеют одно и то же истинностное значение, т. е. когда они оба истинны или оба ложны. Соответственно, эквивалентность является ложной, когда одно из входящих в нее высказываний истинно, а другое ложно.

Обозначим эквивалентность символом ↔, формула AВ может быть прочитана так: "А, если и только если В". Таблица истинности для эквивалентности приводится.

С использованием введенной логической символики связь эквивалентности и импликации можно представить так: "АВ" означает "В) & (ВА)".

Например: высказывание "Ромб является квадратом, если и только если все углы ромба прямые" означает "Если ромб есть квадрат, то все углы ромба прямые, и если все углы ромба прямые, то ромб есть квадрат".

Эквивалентность является отношением типа равенства. Как и всякое такое отношение, эквивалентность высказываний является рефлексивной (всякое высказывание эквивалентно самому себе), симметричной (если одно высказывание эквивалентно другому, то второе эквивалентно первому) и транзитивной (если одно высказывание эквивалентно другому, а другое — третьему, то первое высказывание эквивалентно третьему).

В следующей таблице перечислены все шесть связок, которые были введены ранее:

Следующие примеры показывают употребление данных связок.

Эти таблицы показывают, что формулы A), (A v ~ A), ~ (A & ~ А), ((АВ) & А)В и ((AВ) & ~ В) → ~ А принимают значение истинно при любых значениях входящих в них переменных. Такие формулы называются общезначимыми, или тождественно истинными, или тавтологиями. Более подробно об общезначимых формулах, представляющих законы логики, говорится в главе, посвященной этим законам.

<p><strong>3. Описательные и оценочные высказывания</strong></p>

И в обычном языке, и в логике употребляется несколько видов высказываний. До сих пор речь шла только об одном из них — об описательных высказываниях. Главной функцией описательного высказывания является описание действительности. Если высказывание описывает реальное положение дел, оно считается истинным, если не соответствует реальности — ложным. Обычно само понятие описательного высказывания определяют в терминах истины и лжи: высказывание есть повествовательное предложение, рассматриваемое вместе с его содержанием (смыслом) как истинное или ложное.

Перейти на страницу:

Похожие книги

Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература