§ 34. Кроме
Сходство между определением и аксиомой состоит в том, что и определения и аксиомы употребляются в качестве исходных оснований доказательства, т. е. таких оснований, которые не выводятся из других оснований.
Различие между определением и аксиомой может быть легко выяснено. Определение есть установление содержания основного для данной науки понятия. Определение, например, вертикального угла предполагает согласие между всеми геометрами о том, какое содержание разумеют они, когда речь идёт о вертикальных углах. Определение понятия «товар» предполагает согласие между экономистами, по которому под «товаром» все они разумеют вещь, способную удовлетворять какую-либо потребность и способную обмениваться на другие вещи. Установление системы принятых в данной науке определений устраняет ту сбивчивость в понятиях, которая была бы неизбежной, если бы относительно терминов, означающих эти понятия, не существовало согласия.
Чем точнее определение, тем меньше опасность логических ошибок, происходящих от отсутствия определённости в мышлении. И, напротив, при отсутствии точных определений понятий всегда возможно недоразумение, состоящее в том, что собеседники или спорщики только воображают, будто рассуждают об одном и том же предмете, в действительности же каждый из них в ходе рассуждения под одним и тем же словом разумеет не совсем одно и то же (а иногда и совершенно различное) содержание.
§ 35. В отличие от определения, которое только устанавливает содержание понятия,
Определение, само по себе взятое, ещё не говорит о необходимой истинности определяемого. Правда, в огромном большинстве случаев определения выражают то самое содержание предмета, которое существует в действительности. Но возможно точное определение и такого понятия, которое означает предмет, не существующий и не могущий существовать в действительности. Так, задача квадратуры круга, т. е. отыскания квадрата, площадь которого была бы в точности равновелика площади круга, есть задача неразрешимая, но самое понятие квадратуры круга может быть определено вполне точно.
Напротив, аксиома есть не условие, принятое относительно значения и содержания известного понятия, но некоторое утверждение, которое рассматривается в данной науке в качестве положения заведомо истинного.
§ 36. Иногда думают, будто аксиомы не доказываются потому, что истины, выражаемые в этих аксиомах, настолько очевидны, что не требуют никакого доказательства. Мнение это не совсем правильное. И действительно, очевидность истины, сама по себе взятая, ещё не освобождает от необходимости доказать эту истину, — если только такое доказательство может быть найдено.В геометрии, например, существует немало теорем, которые не-специалисту представляются совершенно очевидными в своей истинности и которые тем не менее доказываются со всей строгостью принятых в этой науке доказательств. Такова, например, теорема, согласно которой диаметр всякого круга делит этот круг на равные части и т. д.
§ 37. Но аксиомы даже не являются положениями
По крайней мере некоторые из аксиом геометрии уже в древности казались далеко не безусловно очевидными. Таков, например, пятый постулат, или одиннадцатая аксиома Евклида, согласно которой через точку
Рис. 69
Замеченная уже самим Евклидом независимость ряда предложений, доказываемых геометрией, от одиннадцатой аксиомы, появление этой аксиомы в «Началах» Евклида лишь после доказательства 28 теорем первой книги «Начал», внушали геометрам мысль доказать эту аксиому в качестве теоремы. Однако попытка доказательства её, предпринятая вслед за другими геометрами Лобачевским и так же, как и у них, неудавшаяся, привела Лобачевского к открытию, что допущение, противоречащее аксиоме о параллельных, в сочетании со всеми остальными аксиомами Евклида, будучи принято в качестве одного из исходных оснований геометрии, даёт возможность развить целую систему геометрии, которая, при всём противоречии этого основания непосредственному наглядному представлению о пространственных отношениях, нигде не запутывается во внутренних противоречиях и строго доказывает все свои предположения.