Например, уже рассмотренное нами отношение между объёмами понятий «паразиты» и «растения» может быть представлено так, как оно изображено на рис. 3: некоторые (но не все) паразиты суть растения, и некоторые (но не все) растения суть паразиты. При этом заштрихованная и общая обоим кругам часть плоскости рисунка будет обозначать те предметы, которые одновременно принадлежат как объёму понятия А, так и объёму понятия В. Незаштрихованные части обоих кругов будут обозначать те части объёмов обоих понятий, которые не могут совпадать: растения, которые не являются паразитами, и паразитов, которые не являются растениями.
Если ни один предмет, принадлежащий объёму понятия А, не может одновременно принадлежать объёму понятия В, то отношение между объёмами таких двух понятий изображается при помощи двух кругов, помещённых
Рис. 4
Например, отношение между объёмами понятий «острый угол» и «тупой угол» может быть представлено так, как оно представлено на рис. 4: сразу видно, что ни один острый угол не может быть тупым углом и, наоборот, ни один тупой угол не может быть острым.
§ 24. В отличие от
Так как объёмы несовместимых понятий не могут совпадать между собой даже частично, то отношение между объёмами таких понятий изображается так, как это представлено на рис. 4, — в виде двух кругов, лежащих один
§ 25. И класс совместимых понятий и класс понятий несовместимых в свою очередь заключают в себе каждый дальнейшие подразделения.
Совместимые понятия бывают либо
Равнозначащими понятиями называются такие понятия, у которых содержание заключает в каждом из них различные признаки, однако признаки эти так связаны между собой, что в силу этой связи
Наглядно отношение между объёмами равнозначащих понятий изображается так, как оно представлено на рис. 5.
Рис. 5
Здесь буквы А и В, помещённые внутри одного и того же круга, обозначают, что у понятий А и В содержание различно, но объём — один и тот же.
§ 26. Второй вид совместимых понятий составляют
Рассмотрим теперь отношение между их объёмами. В то время как содержание понятия «треугольник» составляет только часть содержания понятия «прямоугольный треугольник», с объёмами этих понятий дело обстоит наоборот: объём понятия «прямоугольный треугольник» мыслится как полностью содержащийся в объёме понятия «треугольник», образуя только часть этого последнего, так как кроме прямоугольных треугольников к треугольникам принадлежат ещё и другие треугольники.